碱金属掺杂橄榄石型NaFePO4的第一性原理研究

(厦门大学物理科学与技术学院,福建 厦门 361005)

第一性原理; NaFePO4; 钠离子电池; 碱金属掺杂; 正极材料

First-principles investigation on alkalis doped olivine NaFePO4
BAI Zongyao,ZHENG Feng,WU Shunqing*

(College of Physical Science and Technology,Xiamen University,Xiamen 361005,China)

first-principles; NaFePO4; Na-ion battery; alkalis doping; cathode material

DOI: 10.6043/j.issn.0438-0479.201903013

备注

采用基于密度泛函理论(DFT)的第一性原理方法研究了钠离子电池正极材料橄榄石型NaFePO4及其碱金属(Li、Na)掺杂体系的结构稳定性、电子结构、充放电过程结构演化及相关电化学性质.计算结果显示,NaFePO4可掺杂适量Li、Na,且掺杂后结构稳定.脱钠相结构形成能的计算模拟了NaFePO4及其掺杂体系充电过程中的相变,NaFePO4在充电过程中存在Na5/6FePO4与Na2/3FePO42个中间相,铁位锂掺杂体系存在Na3/4(Li1/12Fe11/12)PO4、Na1/2(Li1/12Fe11/12)PO4、Na1/6(Li1/12Fe11/12)PO43个稳定中间相,铁位钠掺杂体系存在Na5/12(Na1/12Fe11/12)PO4、Na1/6(Na1/12Fe11/12)PO4、Na1/12(Na1/12Fe11/12)PO43个稳定中间相.此外,通过分析电子结构,还发现Li、Na掺杂体系中有部分O2-发生氧化参与电荷补偿,这使得掺杂体系的充电电压略高于未掺杂的NaFePO4.

In this work,first-principles calculations based on density functional theory(DFT)are performed to study structural stabilities,electronic properties,structural evolution in charge/discharge process and electrochemical properties of olivine NaFePO4 and doped systems with alkali metals of Li and Na for the cathode material of Na-ion batteries.Our results show that the NaFePO4 can be doped with appropriate amounts of Li and Na, and the structure after doping can become stable.The calculated formation energy of the desodiated products simulates the phase transition in the charge process of NaFePO4 and its doping systems.There are two intermediate phases of Na5/6FePO4 and Na2/3FePO4 in the charge process of NaFePO4,as well as three intermediate phases of Na3/4(Li1/12Fe11/12)PO4, Na1/2(Li1/12Fe11/12)PO4, Na1/6(Li1/12Fe11/12)PO4 and of Na5/12(Na1/12Fe11/12)PO4, Na1/6(Na1/12Fe11/12)PO4, Na1/12(Na1/12Fe11/12)PO4 in those doped systems with Li and Na,respectively.In addition,by exploring the electronic properties, it is found that the partial oxygen ions in those doped systems of Li and Na are oxidized to participate in charge compensation,and this mechanism of charge compensation also tends to elevate the voltage of the doped systems to become higher than that of undoped-NaFePO4.