基于隐马尔科夫模型的市场指数量化择时研究

(厦门大学软件学院,福建 厦门 361005)

隐马尔科夫模型; 市场择时; 交易策略

Research of Market Index Quantitative Timing Based on Hidden Markov Model
FU Zhongjie,WU Qingqiang*

(Software School of Xiamen University,Xiamen 361005,China)Abstract:Quantitative market timing constitutes an important part of quantitative investment to choose the best trading opportunity.To verify the feasibility of applying hidden markov model(HMM)to

hidden Markov model(HMM); market timing; trading strategy

DOI: 10.6043/j.issn.0438-0479.201712002

备注

量化择时是量化投资领域的重要组成,主要负责评判何时进行交易.为了验证隐马尔科夫模型(hidden Markov model,HMM)应用到量化择时的可行性,基于股票市场原始数据计算得到候选特征集,并利用HMM对各个单特征进行特征筛选,最后使用选出的特征集训练得到综合模型,预测交易日的市场状态.实验结果表明,基于HMM的交易策略比双均线策略和基于k-均值(k-means)聚类的策略都有更好的表现,且具有较强的识别市场状态、规避系统性风险以及获取超额收益的能力.

Quantitative market timing constitutes an important part of quantitative investment to choose the best trading opportunity.To verify the feasibility of applying hidden markov model(HMM)to quantitative market timing,we creatively calculate candidate features set based on raw data,use HMM to test performance on each single feature,and train a comprehensive model using selected features to predict the market state of the next trading day.Experimental results show that HMM-based strategy enjoys better stability and profitability compared with strategies based on moving average or k-均值聚类算法的量化择时模型作为对比,对实验结果进行了分析,验证了HMM具有识别市场中长期状态的能力.HMM的主要原理在于马尔科夫性质的假设,相邻时序样本之间的关联信息能够被有效利用,隐状态的转换存在一定的概率分布,因而它能够选择合适的交易时机,并在市场迎来暴跌时有效保护资产组合.另外相较于其他两种常见策略,它在敏感性和稳定性上有更好的表现.