强散射介质中0π脉冲的受激拉曼光谱
孙 栋1*,Dhayal Suman2,林洪沂1,Rostovtsev Yuri2

(1.厦门理工学院光电与通信工程学院,福建省光电技术与器件重点实验室(厦门理工学院),福建 厦门 361024; 2.北德州大学物理系,北德州大学非线性科学中心,德克萨斯州,登顿TX 76203)

受激拉曼光谱; 相干散射; 脉冲波形; 离散偶极近似

Stimulated Raman spectroscopy of 0π pulse in strongly scattering media
SUN Dong1*,DHAYAL Suman2,LIN Hongyi1,ROSTOVTSEV Yuri2

(1.Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices,School of Optoelectronic andCommunication Engineering,Xiamen University of echnology,Xiamen 361024,China; 2.Center for Nonlinear Sciences,Department of Physics,University of North Texas,Denton,TX 76203,USA)

stimulated Raman spectroscopy; quantum coherence; pulse shaping; discrete-dipole approximation

DOI: 10.6043/j.issn.0438-0479.201808001

备注

拉曼光谱由于具有响应速度快,灵敏度高,不侵入待测物质等特点,近年来在生物和医学检测及成像领域的应用受到了较多的关注.然而,生物活组织往往具有较强的散射特性,影响受激拉曼光谱的成像质量.为了提高受激拉曼光谱的成像质量,引入脉冲波形技术,采用对拉曼散射具有较高敏感性的0π脉冲为斯托克斯脉冲,利用离散偶极矩近似方法,对强散射介质中的脉冲传输进行数值模拟.研究发现:在多次散射的作用下,尽管激光脉冲强度随着其在介质中的传输距离增大而衰减,但受益于0π脉冲的特性,输出信号在双光子共振时的强度将增强2倍左右,为提高强散射介质中的受激拉曼光谱质量提供了一个新的可能.

Due to its fast response,high sensitivity,and non-intrusion into the sample,the application of Raman spectroscopy in the biological and medical detection and imaging fields has received much attention in recent years.However,biological living tissues usually exhibit high scattering characteristics,which greatly limit the imaging quality of stimulated Raman spectroscopy.To improve the imaging quality,we study the propagation of pulses and stimulated Raman spectroscopy process in strong scattering media by using the pulse shaping technique and discrete dipole moment approximation method,in which a 0-pi pulse with high sensitivity to Raman scattering is adopted as Stokes pulse.It is found that under the influence of multiple scattering,the pulse intensity decreases with the increase of its propagation distance in the media.Benefiting from these characteristics of 0π pulse,the intensity of output signal in two-photon resonance increases by approximately three times,providing a possible way to improve the imaging quality of stimulated Raman spectroscopy in strong scattering media.