|本期目录/Table of Contents|

[1]庞兴慧,祁 宏*.基于钙响应钟型曲线构建的钙振荡模型[J].厦门大学学报(自然科学版),2019,58(04):574-581.[doi:10.6043/j.issn.0438-0479.201901030]
 PANG Xinghui,QI Hong*.A calcium oscillation model based on bell-shaped calcium-response curve[J].Journal of Xiamen University(Natural Science),2019,58(04):574-581.[doi:10.6043/j.issn.0438-0479.201901030]





A calcium oscillation model based on bell-shaped calcium-response curve
庞兴慧祁 宏*
山西大学复杂系统研究所,疾病防控的数学技术与大数据分析山西省重点实验室,山西 太原 030006
PANG XinghuiQI Hong*
Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention,Complex Systems Research Center,Shanxi University,Taiyuan 030006,China
钙振荡 三磷酸肌醇受体 钟型曲线 分岔分析
Ca2+ oscillations inositol 145-trisphosphate receptor bell-shaped curve bifurcation analysis
Q 612
细胞质钙离子(Ca2+)常以浓度振荡变化的方式控制许多生理活动,内质网上的三磷酸肌醇受体(inositol 1,4,5-trisphosphate receptor,IP3R)通道是产生钙振荡的关键因素,因此研究其振荡机制具有重要意义.虽然钙振荡已被广泛建模,但大部分模型细胞质与内质网中钙振荡的范围与实验观测数据差异较大.通过整合最近的实验结果,基于IP3R通道活性对细胞质Ca2+浓度依赖的钟型曲线构建了一个新的钙振荡模型.模型结果除了可以很好地模拟实验中关于钙振荡范围的数据,还可重复多种实验现象.对模型进行参数敏感性分析后,进一步采用单参数分岔分析分别研究了两个高敏感参数,即细胞质内Ca2+缓冲蛋白的总浓度和IP3R通道激活Ca2+的解离常数(K1)对钙振荡的影响,发现它们对钙信号有相反的作用.对三磷酸肌醇(IP3)浓度和K1进行双参数分岔分析的结果表明K1对IP3能产生钙振荡的区域及其振幅有重要影响,揭示可以通过改变K1影响细胞对外界刺激的响应及其钙振荡模式.该研究有助于理解钙振荡机制,并可为后续理论研究提供框架.
Oscillations in cytosolic calcium concentration(cCa_Cyt)regulate a diverse range of cellular processes.Dynamic properties of inositol 1,4,5-trisphosphate receptor(IP3R)located on the endoplasmic reticulum are crucial for the generation of Ca2+ oscillations.Thus,it is of great interest to determine mechanisms governing such oscillations.Although Ca2+ oscillations have been modeled extensively,one major problem with almost all published models lies in that the oscillatory ranges of cCa_Cyt and calcium concentration in endoplasmic reticulum(cCa_ER)do not agree with recent experimental data.By integrating recent experimental results,a new calcium oscillation model is constructed based on bell-shaped dependence of IP3R gating on cCa_Cyt.The cCa_Cyt and cCa_ER obtained by the model lie in ranges of experimental results.In addition,the model can successfully reproduce several features described in experimental studies.After parameter sensitivity analysis of the model,the single-parameter bifurcation analysis is conducted to study the impact of two high-sensitivity parameters,i.e.,the total concentration of cytoplasmic Ca2+ binding protein and IP3R dissociation constant for activating Ca2+(K1)on Ca2+ oscillations. Results suggest that they exert an opposite effect on calcium signal.The result of two-parameter bifurcation analysis of IP3 concentration and K1 indicates that K1 plays a crucial role on the region of IP3 concentration that can generate Ca2+ oscillations and their amplitudes,revealing that K1 can affect the response of cells to external stimuli and the Ca2+ oscillatory pattern of the cells.This study not only helps to understand the mechanism of Ca2+ oscillations,but also provides a framework for subsequent theoretical research.


[1] BERRIDGE M J,LIPP P,BOOTMAN M D.The versatility and universality of calcium signalling[J].Nature Reviews Molecular Cell Biology,2000,1(1):11-21.
[2] BERRIDGE M J,BOOTMAN M D,LIPP P.Calcium:a life and death signal[J].Nature,1998,395(6703):645-648.
[3] 牛帅,帅建伟,祁宏.Bcl-2蛋白抑制钙信号的建模与全局动力学分析[J].物理学报,2017,66(23):238701.
[4] SUZUKI J,KANEMARU K,IINO M.Genetically encoded fluorescent indicators for organellar calcium imaging[J].Biophysical Journal,2016,111(6):1119-1131.
[5] GIORGI C,DANESE A,MISSIROLI S,et al.Calcium dynamics as a machine for decoding signals[J].Trends in Cell Biology,2018,28(4):258-273.
[6] TOYOSHIMA C,IWASAWA S,OGAWA H,et al.Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state[J].Nature,2013,49(7440):260-264.
[7] CHANG Y Q,BRUNI R,KLOSS B,et al.Structural basis for a pH-sensitive calcium leak across membranes[J].Science,2014,344(6188):1131-1135.
[8] BERRIDGE M J,BOOTMAN M D,RODERICK H L.Calcium signalling:dynamics,homeostasis and remodelling[J].Nature Reviews Molecular Cell Biology,2003,4(7):517-529.
[9] RIZZUTO R,DE STEFANI D,RAFFAELLO A,et al.Mitochondria as sensors and regulators of calcium signalling[J].Nature Reviews Molecular Cell Biology,2012,13(9):566-578.
[10] DUPONT G,SNEYD J.Recent developments in models of calcium signalling[J].Current Opinion in Systems Biology,2017,3:15-22.
[11] MEYER T,STRYER L.Molecular model for receptor-stimulated calcium spiking[J].Proceedings of the National Academy of Sciences,1988,85(14):5051-5055.
[12] GOLDBETER A,DUPONT G,BERRIDGE M J.Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation[J].Proceedings of the National Academy of Sciences,1990,87(4):1461-1465.
[13] MARHL M,HABERICHTER T,BRUMEN M,et al.Complex calcium oscillations and the role of mitochondria and cytosolic proteins[J].Biosystems,2000,57(2):75-86.
[14] DE YOUNG G W,KEIZER J.A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration[J].Proceedings of the National Academy of Sciences,1992,89(20):9895-9899.
[15] ATRI A,AMUNDSON J,CLAPHAM D,et al.A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte[J].Biophysical Journal,1993,65(4):1727-1739.
[16] SNEYD J,DUFOUR J F.A dynamic model of the type-2 inositol trisphosphate receptor[J].Proceedings of the National Academy of Sciences,2002,99(4):2398-2403.
[17] BEZPROZVANNY I,WATRAS J,EHRLICH B E.Bell-shaped calcium-response curves of Ins(1,4,5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum[J].Nature,1991,351:751-754.
[18] FINCH E A,TURNER T J,GOLDIN S M.Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release[J].Science,1991,252(5004):443-446.
[19] SNEYD J,TSANEVA-ATANASOVA K,YULE D I,et al.Control of calcium oscillations by membrane fluxes[J].Proceedings of the National Academy of Sciences,2004,101(5):1392-1396.
[20] QI H,LI L X,SHUAI J W.Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations[J].Scientific Reports,2015,2015(5):7984.
[21] SNEYD J,HAN J M,WANG L W,et al.On the dynamical structure of calcium oscillations[J].Proceedings of the National Academy of Sciences,2017,114(7):1456-1461.
[22] LI X,ZHANG S X,LIU X J,et al.Dynamic analysis on the calcium oscillation model considering the influences of mitochondria[J].Biosystems,2018,163:36-46.
[23] SHINOHARA T,MICHIKAWA T,ENOMOTO M,et al.Mechanistic basis of bell-shaped dependence of inositol 1,4,5-trisphosphate receptor gating on cytosolic calcium[J].Proceedings of the National Academy of Sciences,2011,108(37):15486-15491.
[24] HAMADA K,MIYATAKE H,TERAUCHI A,et al.IP3-mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X-ray crystallography[J].Proceedings of the National Academy of Sciences,2017,114(18):4661-4666.
[25] PAKNEJAD N,HITE R.Structural basis for the regulation of inositol trisphosphate receptors by Ca2+ and IP3[J].Nature Structural & Molecular Biology,2018,25(8):660-668.
[26] WINTHER A M L,BUBLITZ M,KARLSEN J L,et al.The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm[J].Nature,2013,495(7440):265-269.
[27] FAN G Z,BAKER M L,WANG Z,et al.Gating machinery of InsP3R channels revealed by electron cryomicroscopy[J].Nature,2015,527(7578):336-341.
[28] SHUAI J W,YANG D P,PEARSON J E,et al.An investigation of models of the IP3R channel in Xenopus oocyte[J].Chaos,2009,19(3):037105.
[29] CAI X H,LI X,QI H,et al.Comparison of gating dynamics of different IP3R channels with immune algorithm searching for channel parameter distributions[J].Physical Biology,2016,13(5):056005.
[30] 牛帅,孙小强,祁宏.改进双钙库模型的分岔分析[J].中山大学学报(自然科学版),2018,57(5):132-139.
[31] MAK D O D,MCBRIDE S,FOSKETT J K.Inositol 1,4,5-tris-phosphate activation of inositol tris-phosphate receptor Ca2+ channel by ligand tuning of Ca2+ inhibition[J].Proceedings of the National Academy of Sciences,1998,95(26):15821-15825.
[32] JACOB R,MERRITT J E,HALLAM T J,et al.Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells[J].Nature,1988,335(6185):40-45.
[33] LECHLEITER J D,JOHN L M,CAMACHO P.Ca2+ wave dispersion and spiral wave entrainment in Xenopus laevis oocytes overexpressing Ca2+ ATPases[J].Biophysical Chemistry,1998,72(1):123-129.
[34] DE PITTA M,VOLMAN V,LEVINE H,et al.Coexistence of amplitude and frequency modulations in intracellular calcium dynamics[J].Physical Review E,2008,77(3):030903.
[35] PECZE L,BLUM W,SCHWALLER B.Routes of Ca2+ shuttling during Ca2+ oscillations[J].Journal of Biological Chemistry,2015,290(47):28214-28230.
[36] GIORGI C,MARCHI S,PINTON P.The machineries,regulation and cellular functions of mitochondrial calcium[J].Nature Reviews Molecular Cell Biology,2018,19(11):713-730.
[37] 吴晨旭,帅建伟,MERLITZ H.软物质体系动力学特性及生物体系物质与信号的传输[J].厦门大学学报(自然科学版),2011,50(2):239-244.
[38] SNEYD J,TSANEVA-ATANASOVA K,REZNIKOV V,et al.A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations[J].Proceedings of the National Academy of Sciences,2006,103(6):1675-1680.


更新日期/Last Update: 1900-01-01