|本期目录/Table of Contents|

[1]白宗尧,郑 锋,吴顺情*.碱金属掺杂橄榄石型NaFePO4的第一性原理研究[J].厦门大学学报(自然科学版),2019,58(04):560-566.[doi:10.6043/j.issn.0438-0479.201903013]
 BAI Zongyao,ZHENG Feng,WU Shunqing*.First-principles investigation on alkalis doped olivine NaFePO4[J].Journal of Xiamen University(Natural Science),2019,58(04):560-566.[doi:10.6043/j.issn.0438-0479.201903013]
点击复制

碱金属掺杂橄榄石型NaFePO4的第一性原理研究(PDF)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年04期
页码:
560-566
栏目:
研究论文
出版日期:
2019-07-28

文章信息/Info

Title:
First-principles investigation on alkalis doped olivine NaFePO4
文章编号:
0438-0479(2019)04-0560-07
作者:
白宗尧郑 锋吴顺情*
厦门大学物理科学与技术学院,福建 厦门 361005
Author(s):
BAI ZongyaoZHENG FengWU Shunqing*
College of Physical Science and Technology,Xiamen University,Xiamen 361005,China
关键词:
第一性原理 NaFePO4 钠离子电池 碱金属掺杂 正极材料
Keywords:
first-principles NaFePO4 Na-ion battery alkalis doping cathode material
分类号:
O 469
DOI:
10.6043/j.issn.0438-0479.201903013
文献标志码:
A
摘要:
采用基于密度泛函理论(DFT)的第一性原理方法研究了钠离子电池正极材料橄榄石型NaFePO4及其碱金属(Li、Na)掺杂体系的结构稳定性、电子结构、充放电过程结构演化及相关电化学性质.计算结果显示,NaFePO4可掺杂适量Li、Na,且掺杂后结构稳定.脱钠相结构形成能的计算模拟了NaFePO4及其掺杂体系充电过程中的相变,NaFePO4在充电过程中存在Na5/6FePO4与Na2/3FePO42个中间相,铁位锂掺杂体系存在Na3/4(Li1/12Fe11/12)PO4、Na1/2(Li1/12Fe11/12)PO4、Na1/6(Li1/12Fe11/12)PO43个稳定中间相,铁位钠掺杂体系存在Na5/12(Na1/12Fe11/12)PO4、Na1/6(Na1/12Fe11/12)PO4、Na1/12(Na1/12Fe11/12)PO43个稳定中间相.此外,通过分析电子结构,还发现Li、Na掺杂体系中有部分O2-发生氧化参与电荷补偿,这使得掺杂体系的充电电压略高于未掺杂的NaFePO4.
Abstract:
In this work,first-principles calculations based on density functional theory(DFT)are performed to study structural stabilities,electronic properties,structural evolution in charge/discharge process and electrochemical properties of olivine NaFePO4 and doped systems with alkali metals of Li and Na for the cathode material of Na-ion batteries.Our results show that the NaFePO4 can be doped with appropriate amounts of Li and Na, and the structure after doping can become stable.The calculated formation energy of the desodiated products simulates the phase transition in the charge process of NaFePO4 and its doping systems.There are two intermediate phases of Na5/6FePO4 and Na2/3FePO4 in the charge process of NaFePO4,as well as three intermediate phases of Na3/4(Li1/12Fe11/12)PO4, Na1/2(Li1/12Fe11/12)PO4, Na1/6(Li1/12Fe11/12)PO4 and of Na5/12(Na1/12Fe11/12)PO4, Na1/6(Na1/12Fe11/12)PO4, Na1/12(Na1/12Fe11/12)PO4 in those doped systems with Li and Na,respectively.In addition,by exploring the electronic properties, it is found that the partial oxygen ions in those doped systems of Li and Na are oxidized to participate in charge compensation,and this mechanism of charge compensation also tends to elevate the voltage of the doped systems to become higher than that of undoped-NaFePO4.

参考文献/References:

[1] BHAT M D,O’DWYER C.Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes[J].Physical Chemistry Chemical Physics,2015,17:4799-4844.
[2] PALACIN M R.Recent advances in rechargeable battery materials:a chemist’s perspective[J].Chemical Society Reviews,2009,38:2565-2575.
[3] THACKERAY M M,WOLVERTON C,ISAACS E D.Electrical energy storage for transportation-approaching the limits of,and going beyond,lithium-ion batteries[J].Energy & Environmental Science,2012,5(7):7854-7863.
[4] ETACHERI V,MAROM R,ELAZARI R,et al.Challen-ges in the development of advanced Li-ion batteries:a review[J].Energy & Environmental Science,2011,4(9):3243-3262.
[5] ZHAO T,ZHANG X J,LI X,et al.Crystallinity depen-dence of electrochemical properties for LiFePO4[J].Rare Metals,2015,34(5):334-337.
[6] KOLEVA V,BOYADZHIEVA T,ZHECHEVA E,et al.Precursor-based methods for low-temperature synthesis of defectless NaMnPO4 with an olivine- and maricite-type structure[J].CrystEngComm,2013,15:9080-9089.
[7] LU J,CHUNG S C,NISHIMURA S,et al.Phase diagram of olivine NaxFePO4 (0<x<1)[J]. Chemistry of Materials,2013,25(22):4557-4565.
[8] MOREAU P,GUYOMARD D,GAUBICHER J,et al.Structure and stability of sodium intercalated phases in olivine FePO4[J].Chemistry of Materials,2010,22(14):4126-4128.
[9] ZHU Y,XU Y,LIU Y,et al.Comparison of electrochemi-cal performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J].Nanoscale,2013,5:780-787.
[10] JAIN A,ONG S P,HAUTIER G,et al.Commentary:the materials project:a materials genome approach to accelerating materials innovation[J].APL Materials,2013,1(1):011002.
[11] BIANCHINI F,FJELLVAG H,VAJEESTON P.A first-principle study of NaMPO4(M=Mn,Fe,Co,Ni)possible novel structures as cathode materials for sodium-ion batteries:structural and electrochemical characterization[J].Materials Chemistry and Physics,2018,219:212-221.
[12] Meng Y S,ARROYO-DE DOMPABLO M E.Recent advan-ces in first principles computational research of cathode materials for lithium-ion batteries[J].Accounts of Chemical Research,2013,46:1171-1180.
[13] ISLAM M S,FISHER C J.Lithium and sodium battery cathode materials:computational insights into voltage,diffusion and nanostructural properties[J].Chemical Society Reviews,2014,43(1):185-204.
[14] SARACIBAR A,CARRASCO J,SAUREL D,et al.Inves-tigation of sodium insertion-extraction in olivine NaxFePO4(0≤x≤1)using first-principles calculations[J].Physical Chemistry Chemical Physics,2016,18:13045-13051.
[15] NAKAYAMA M,YAMADA S,JALEM R,et al.Densi-ty functional studies of olivine-type LiFePO4 and NaFePO4 as positive electrode materials for rechargeable lithium and sodium ion batteries[J].Solid State Ionics,2016,286:40-44.
[16] KRESSE G,FURTHMULLER J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science,1996,6(1):15-50.
[17] KRESSE G,FURTHMULLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].Physical Review B,1996,54(16):11169-11186.
[18] BlOCHL P E.Projector augmented-wave method[J].Physical Review B,1994,50(24):17953.
[19] KRESSE G,JOUBERT D.From ultrasoft pseudopoten-tials to the projector-augmented-wave method[J].Physical Review B,1999,59(3):1758-1775.
[20] PERDEW J P,BURKE K,ERNZERHOF M.Generali-zed gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.
[21] XIE Y,YU H T,YI T F,et al.Understanding the thermal and mechanical stabilities of olivine-type LiMPO4(M=Fe,Mn)as cathode materials for rechargeable lithium batteries from first principles[J].ACS Applied Materials & Interfaces,2014,6(6):4033-4042.
[22] DUDAREV S L,BOTTON G A,SAVRASOV S Y,et al.Electron-energy-loss spectra and the structural stability of nickel oxide:an LSDA+U study[J].Physical Review B,1998,57(3):1505.
[23] ZHOU F,COCOCCIONI M,KANG K,et al.The Li inter-calation potential of LiMPO4 and LiMSiO4 olivines with M=Fe,Mn,Co,Ni[J].Electrochemistry Communica-tions,2004,6(11):1144-1148.
[24] BOUCHE F,GAUBICHER J,CUISINIER M,et al.Eluci-dation of the Na2/3FePO4 and Li2/3FePO4 intermediate superstructure revealing a pseudouniform ordering in 2D[J].Journal of the American Chemical Society,2014,136(25):9144-9157.
[25] PADHI A K,NANJUNDASWAMY K S,GOODENOUGH J B.Phospho-olivines as positive electrode materials for rechargeable lithium batteries[J].Journal of the Elc-trochemical Society,1997,144(4):1188-1194.

备注/Memo

备注/Memo:
收稿日期:2019-03-08 录用日期:2019-05-09
基金项目:国家自然科学基金(11874307); 福建省自然科学基金(2015J01030)
*通信作者:wsq@xmu.edu.cn
更新日期/Last Update: 1900-01-01