|本期目录/Table of Contents|

[1]完颜永劲,张嘉伟,陈佳煜,等.Ag@Cu2O纳米立方体核壳结构对光助丙烯氧化反应的影响[J].厦门大学学报(自然科学版),2019,58(04):491-498.[doi:10.6043/j.issn.0438-0479.201806015]
 WANYAN Yongjin,ZHANG Jiawei,CHEN Jiayu,et al.Influence of Ag@Cu2O nanocube core-shell structure on the photo-assisted propylene oxidation[J].Journal of Xiamen University(Natural Science),2019,58(04):491-498.[doi:10.6043/j.issn.0438-0479.201806015]
点击复制

Ag@Cu2O纳米立方体核壳结构对光助丙烯氧化反应的影响(PDF)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年04期
页码:
491-498
栏目:
研究论文
出版日期:
2019-07-28

文章信息/Info

Title:
Influence of Ag@Cu2O nanocube core-shell structure on the photo-assisted propylene oxidation
文章编号:
0438-0479(2019)04-0491-08
作者:
完颜永劲张嘉伟陈佳煜王秋祥匡 勤*谢兆雄
厦门大学化学化工学院,固体表面物理化学国家重点实验室,福建 厦门 361005
Author(s):
WANYAN YongjinZHANG JiaweiCHEN Jiayu WANG QiuxiangKUANG Qin*XIE Zhaoxiong
State Key Laboratory of Physical Chemistry of Solid Surfaces,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
关键词:
丙烯氧化反应 光助催化反应 表面等离子体共振效应 Ag Cu2O
Keywords:
propylene oxidation photo-assisted catalysis reaction surface plasmon resonance effect Ag Cu2O
分类号:
O 644.11
DOI:
10.6043/j.issn.0438-0479.201806015
文献标志码:
A
摘要:
传统的丙烯氧化反应的生产工艺复杂并且会带来大量污染废弃物,相比之下丙烯与氧气直接进行氧化反应具有很大的优势.然而,关于如何提高这种丙烯氧化反应的催化效率的报道较少.该文以Ag纳米立方体为种子,通过外延生长成功构建了具有核壳结构的Ag@Cu2O纳米立方体,研究了其核壳结构对光助丙烯氧化反应的影响.催化测试结果表明,Cu2O壳层有效抑制了丙烯的过度氧化,提高了丙烯醛的选择性.此外,Ag@Cu2O核壳结构不仅有助于Cu2O壳层的光生电子-空穴的高效分离,而且还可以充分利用内核Ag的表面等离子体共振效应提高局部反应温度.因此,这种核壳型催化剂能够有效地利用光来提高丙烯氧化的反应速率.
Abstract:
The direct oxidation of propylene to propylene oxides,such as acraldehyde,using molecular oxygen has many advantages over traditional processes that usually produce a large number of side products and require complex purification equipments.However,how to improve the catalytic efficiency of catalysts in the propylene oxidation reaction is still a great challenge.In this study,we successfully fabricated Ag@Cu2O core-shell heterostructure catalysts via the epitaxial growth of Cu2O on Ag nanocubes and studied their catalytic performances in the propylene oxidation reaction.Catalytic test results showed that the Cu2O shell efficiently suppressed the reaction of excessive oxidation of propylene and improved the selectivity of acrolein. Moreover, we found that the Ag@Cu2O core-shell heterostructure not only contributed to the efficient separation of photogenerated electron-hole in the Cu2O shell, but also made full use of the surface plasmon resonance effect of Ag core to elevate the local reaction temperature.As a result,this core-shell catalyst can effectively ultilize light to improve the reaction rate of propylene oxidation.

参考文献/References:

[1] NIJHUIS T A,MAKKEE M,MOULIJN J A,et al.The production of propene oxide:catalytic processes and recent developments [J].Industrial & Engineering Chemistry Research,2006,45(10):3447-3459.
[2] 禹茂章.世界精细化工手册(续编)[J].北京:化工部科学技术情报研究所,1986:253.
[3] GHOSH S,ACHARYYA S S,TIWARI R,et al.Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen[J].ACS Catalysis,2014,4(7):2169-2174.
[4] KANAI H,NAKAO M,IMAMURA S.Selective photo-epoxidation of propylene over hydroxyapatite-silica composites[J].Catalysis Communications,2003,4(8):405-409.
[5] SUO Z,JIN M,LU J,et al.Direct gas-phase epoxidation of propylene to propylene oxide using air as oxidant on supported gold catalyst[J].Journal of Natural Gas Chemistry,2008,17(2):184-190.
[6] KHATIB S J,OYAMA S T.Direct oxidation of propylene to propylene oxide with molecular oxygen: a review[J].Catalysis Reviews,2015,57(3):306-344.
[7] LINIC S,ASLAM U,BOERIGTER C,et al.Photochemical transformations on plasmonic metal nanoparticles[J].Nature Materials,2015,14(6):567.
[8] CHRISTOPHER P,XIN H,MARIMUTHU A,et al.Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures[J].Nature Materials,2012,11(12):1044.
[9] FUJISHIMA A,HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37.
[10] NGUYEN V H,CHAN H Y,WU J C S.Synthesis,charac-terization and photo-epoxidation performance of Au-loaded photocatalysts[J].Journal of Chemical Sciences,2013,125(4):859-867.
[11] YOSHIDA H,TANAKA T,YAMAMOTO M,et al.Photooxidation of propene by O2 over silica and Mg-loaded silica[J].Chemical Communications,1996(18):2125-2126.
[12] YOSHIDA H,TANAKA T,YAMAMOTO M,et al.Epoxidation of propene by gaseous oxygen over silica and Mg-loaded silica under photoirradiation[J].Journal of Catalysis,1997,171(2):351-357.
[13] ZHANG Q, LI W,MORAN C,et al.Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties[J].Journal of the American Chemical Society,2010,132(32):11372-11378.
[14] ZHANG Q,LI W,WEN L P,et al.Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor[J].Chemistry-A European Journal,2010,16(33):10234-10239.
[15] KUO C H,HUA T E,HUANG M H.Au nanocrystal-directed growth of Au-Cu2O core-shell heterostructures with precise morphological control[J].Journal of the American Chemical Society,2009,131(49):17871-17878.
[16] LI J,CUSHING S K,BRIGHT J,et al.Ag@ Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts[J].ACS Catalysis,2012,3(1):47-51.
[17] LIU D Y,DING S Y,LIN H X,et al.Distinctive enhanced and tunable plasmon resonant absorption from controllable Au@ Cu2O nanoparticles: experimental and theoretical modeling[J].The Journal of Physical Chemistry C,2012,116(7):4477-4483.
[18] JING H,LARGE N,ZHANG Q,et al.Epitaxial growth of Cu2O on Ag allows for fine control over particle geometries and optical properties of Ag-Cu2O core-shell nanoparticles[J].The Journal of Physical Chemistry C,2014,118(34):19948-19963.
[19] ORZESEK H,SCHULZ R P,DINGERDISSEN U,et al.Selective oxidation of propene with air to propylene oxide,a case study of autoxidation versus catalytic oxidation with AMM-catalysts[J]. Chemical Engineering & Technology,1999,22(8):691-700.
[20] RUIZ A,VAN DER LINDEN B,MAKKEE M,et al.Acrylate and propoxy-groups:contributors to deactivation of Au/TiO2 in the epoxidation of propene[J].Journal of Catalysis,2009,266(2):286-290.
[21] HE J,ZHAI Q, ZHANG Q,et al.Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification[J].Journal of Catalysis,2013,299:53-66.
[22] HUA Q,CAO T,GU X K,et al.Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen[J].Angewandte Chemie International Edition,2014,53(19):4856-4861.
[23] MARIMUTHU A,ZHANG J,LINIC S.Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state[J].Science,2013,339(6127):1590-1593.

备注/Memo

备注/Memo:
收稿日期:2018-06-13 录用日期:2018-08-07
基金项目:国家重点研发计划(2017YFA0206801); 国家重点基础研究发展计划(2015CB932301); 国家自然科学基金(21333008,21671163,21773190,21721001); 中央高校基本科研业务费专项(20720160026)
*通信作者:qkuang@xmu.edu.cn
更新日期/Last Update: 1900-01-01