|本期目录/Table of Contents|

[1]张冠如,宁利超,谭 凯,等.活性碳上羧酸根锚定AuCl3催化乙炔氢氯化反应的理论研究[J].厦门大学学报(自然科学版),2019,58(04):464-470.[doi:10.6043/j.issn.0438-0479.201808003]
 ZHANG Guanru,NING Lichao,TAN Kai,et al.A theoretical investigation of acetylene hydrochlorination catalyzed by AuCl3-anchored by carboxylic group on activated carbon[J].Journal of Xiamen University(Natural Science),2019,58(04):464-470.[doi:10.6043/j.issn.0438-0479.201808003]
点击复制

活性碳上羧酸根锚定AuCl3催化乙炔氢氯化反应的理论研究(PDF)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年04期
页码:
464-470
栏目:
研究论文
出版日期:
2019-07-28

文章信息/Info

Title:
A theoretical investigation of acetylene hydrochlorination catalyzed by AuCl3-anchored by carboxylic group on activated carbon
文章编号:
0438-0479(2019)04-0464-07
作者:
张冠如宁利超谭 凯吕 鑫*
厦门大学化学化工学院,福建 厦门 361005
Author(s):
ZHANG GuanruNING LichaoTAN KaiLü Xin*
College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
关键词:
乙炔氢氯化反应 活性碳 羧酸基团 AuCl3
Keywords:
acetylene hydrochlorination activated carbon carboxylic group AuCl3
分类号:
O 643.12
DOI:
10.6043/j.issn.0438-0479.201808003
文献标志码:
A
摘要:
采用密度泛函的B3LYP方法,运用分子模型对活性碳(AC)上羧酸根负载AuClx催化剂的活性结构、稳定性以及催化乙炔氢氯化的反应机制进行了理论探讨:结果表明:AuCl3催化剂可以被表面羧酸根单原子级分散锚定,形成AC-COOH-AuCl3表面活性中心,进而在氢氯化过程中与乙炔发生协同加成反应生成氯乙烯; 同时形成具有螯合结构的表面活性中心AC-CO2>AuCl2,进而催化遵循分步反应异步加成机制的氢氯化反应,即乙炔活化吸附到Au(Ⅲ)中心,HCl异裂亲核加成到乙炔伴随羧酸根质子化,分子内质子迁移形成Au(Ⅲ)-氯乙烯d- 䥺SymbolpA@ 配键络合物,脱除氯乙烯恢复AC-CO2>AuCl2螯合结构.计算还表明,AC-COOH-AuCl3表面活性中心比Au2Cl6催化组分更不易与乙炔发生Au(Ⅲ)→Au(Ⅰ)的还原反应.
Abstract:
By means of density functional theory B3LYP and molecular models,we have explored theoretically the possible structures and stability of active catalytic center(s)on AuClxcatalyst supported on the carboxylic group-containing activated carbon(AC)and the catalyzing mechanism of acetylene hydrochlorination.Single-atomic-level dispersion of Au(Ⅲ)catalyst can be achieved by coordinating to carboxylic group(—COOH)available on AC,forming such surface species as AC-COOH-AuCl3 with very low tendency of AuCl3 aggregation.Such surface species can react with acetylene following a concerted addition mechanism to release vinyl chloride(VCM)and to form another surface species AC-CO2>AuCl2,in which the Au(Ⅲ)center is chelated by the carboxylic group.The AC-CO2>AuCl2 is quite active in catalyzing acetylene hydrochlorination following a stepwise/asynchronous addition mechanism,i.e.,activated chemisorption of acetylene onto the Au(Ⅲ)center,nucleophilic addition of chlorine to acetylene with protonation of carboxylic group,intramolecular proton transfer to form Au(Ⅲ)-VCM d- 䥺SymbolpA@ complex,and finally release of VCM with resumption of the AC-CO2>AuCl2 species.In addition,the computations disclosed that the tendency of Au(Ⅲ)being reduced to Au(Ⅰ)by acetylene is lower in AC-COOH-AuCl3 than in Au2Cl6.

参考文献/References:

[1] WEI X,SHI H,QIAN W Z,et al.Gas-phase catalytic hydrochlorination of acetylene in a two-stage fluidized-bed reactor[J].Ind Eng Chem Res,2009,48(1):128-133.
[2] ZHANG J,LIU N,LI W,et al.Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts[J].Front Chem Sci Eng,2011,5(4):514-520.
[3] JOHNSTON P,CARTHEY N,HUTCHINGS G J.Discovery,development,and commercialization of gold catalysts for acetylene hydrochlorination[J].J Am Chem Soc,2015,137(46):14548-14557.
[4] ZHU M Y,WANG Q Q,CHEN K,et al.Development of a heterogeneous non-mercury catalyst for acetylene hydrochlorination[J].ACS Catal,2015,5(9):5306-5316.
[5] HUTCHINGS G J,GRADY D T.Effect of drying conditions on carbon supported mercuric chloride catalysts[J].Appl Catal,1985,16(3):411-415.
[6] HUTCHINGS G J,GRADY D T.Hydrochlorination of acetylene:the effect of mercuric chloride concentration on catalyst life[J].Appl Catal,1985,17(1):155-160.
[7] CONTE M,DAVIES C J,MORGAN D J,et al.Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene[J].J Catal,2013,297:128-136.
[8] LI X Y,ZHU M Y,DAI B.AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts[J].Appl Catal B:Environ,2013,142/143:234-240.
[9] LI X Y,PAN X L,YU L,et al.Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene[J].Nat Commun,2014,5:3688.
[10] ZHOU K,LI B,ZHANG Q,et al.The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes[J].ChemSusChem,2014,7(3):723-728.
[11] ZHANG C L,KANG L H,ZHU M Y,et al.Nitrogen-doped active carbon as a metal-free catalyst for acetylene hydrochlorination[J].RSC Adv,2015,5(10):7461-7468.
[12] ZHOU K,JIA J C,LI C H,et al.A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes[J].Green Chemistry,2015,17(1):356-364.
[13] LI X,PAN X,BAO X.Nitrogen doped carbon catalyzing acetylene conversion to vinyl chloride[J].J Energ Chem,2014,23(2):131-135.
[14] HUTCHINGS G.Vapor phase hydrochlorination of acetylene:correlation of catalytic activity of supported metal chloride catalysts[J].J Catal,1985,96(1):292-295.
[15] NKOSI B,COVILLE N J,HUTCHINGS G J.Vapour phase hydrochlorination of acetylene with group Ⅷ andⅠB metal chloride catalysts[J].Appl Catal,1988,43(1):33-39.
[16] PU Y F,ZHANG J L,WANG X,et al.Bimetallic Au-Ni/CSs catalysts for acetylene hydrochlorination[J].Catal Sci Technol,2014,4(12):4426-4432.
[17] CONTE M,CARLEY A F,HEIRENE C,et al.Hydrochlorination of acetylene using a supported gold catalyst:A study of the reaction mechanism[J].J Catal,2007,250(2):231-239.
[18] ZHANG J L,HE Z H,LI W,et al.Deactivation mechanism of AuCl3 catalyst in acetylene hydrochlorination reaction:a DFT study[J].RSC Adv,2012,2(11):4814.
[19] MALTA G,KONDRAT S A,FREAKLEY S J,et al.Identification of single-site gold catalysis in acetylene hydrochlorination[J].Science,2017,355(6332):1399-1403.
[20] QIAO B,LIU J,WANG Y G,et al.Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts[J].ACS Catal,2015,5(11):6249-6254.
[21] WANG B G,YU L,ZHANG J L,et al.Phosphorus-doped carbon supports enhance gold-based catalysts for acetylene hydrochlorination[J].RSC Adv,2014,4(31):15877-15885.
[22] WAN F F,CHAO S L,GUAN Q X,et al.Reaction mechanisms of acetylene hydrochlorination catalyzed by AuCl3 /C catalysts:a density functional study[J].Catal Commun,2017,101:120-124.
[23] BECKE A D.Density-functional thermochemistry.Ⅲ.The role of exact exchange[J].J Chem Phys,1993,98(7):5648-5652.
[24] BECKE A D.Density-functional thermochemistry.Ⅰ.The effect of the exchange-only gradient correction[J].J Chem Phys,1992,96(3):2155-2160.
[25] LEE C,YANG W T,PARR R G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys Rev B,1988,37(2):785-789.
[26] ANDRAE D,H? U?ERMANN U,DOLG M,et al.Energy-adjusted ab initio pseudopotentials for the second and third row transition elements[J].Theor Chim Acta,1990,77(2):123-141.
[27] KRISHNAN R,BINKLEY J S,SEEGER R,et al.Self-consistent molecular orbital methods.ⅩⅩ.A basis set for correlated wave functions[J].J Chem Phys,1980,72(1):650-654.
[28] FUKUI K.The path of chemical reactions:the IRC approach[J].Acc Chem Res,1981,14(12):363-368.
[29] GONZALEZ C,SCHLEGEL H B.An improved algorithm for reaction path following[J].J Chem Phys,1989,90(4):2154-2161.
[30] GONZALEZ C,SCHLEGEL H B.Reaction path following in mass-weighted internal coordinates[J].J Phys Chem,1990,94(14):5523-5527.
[31] GRIMME S,ANTONY J,EHRLICH S,et al.A consistent and accurate ab initio parametrization of density functional dispersion correction(DFT-D)for the 94 elements H-Pu[J].J Chem Phys,2010,132(15):154104.
[32] MCLEAN A D,CHANDLER G S.Contracted Gaussian basis sets for molecular calculations.Ⅰ.Second row atoms,Z=11-18[J].J Chem Phys,1980,72(10):5639-5648.
[33] ACHARYA J,SAHU J N,SAHOO B K,et al.Removal of chromium(Ⅵ)from wastewater by activated carbon developed from tamarind wood activated with zinc chloride[J].Chem Eng J,2009,150(1):25-39.
[34] YAHYA M A,AL-QODAH Z,NGAH C W Z.Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production:a review[J].Renewable and Sustainable Energy Reviews,2015,46:218-235.
[35] RADOVIC L R.The mechanism of CO2 chemisorption on zigzag carbon active sites:a computational chemistry study[J].Carbon,2005,43(5):907-915.
[36] PADAK B,WILCOX J.Understanding mercury binding on activated carbon[J].Carbon,2009,47(12):2855-2864.
[37] YIN C Y,NG M F,GOH B M,et al.Probing the interactions of phenol with oxygenated functional groups on curved fullerene-like sheets in activated carbon[J].Phys Chem Chem Phys,2016,18(5):3700-3705.

备注/Memo

备注/Memo:
收稿日期:2018-08-02 录用日期:2018-09-04
基金项目:国家自然科学基金(91545105,21273177)
*通信作者:xinlu@xmu.edu.cn
更新日期/Last Update: 1900-01-01