|本期目录/Table of Contents|

[1]张 勇,耿国华*.基于不变尺度特征变换和有界失真映射的受损文物图像匹配方法[J].厦门大学学报(自然科学版),2019,58(03):449-454.[doi:10.6043/j.issn.0438-0479.2018015]
 ZHANG Yong,GENG Guohua*.Matching method of damaged cultural relic images based on scale invariant feature transform and bounded distortion mapping[J].Journal of Xiamen University(Natural Science),2019,58(03):449-454.[doi:10.6043/j.issn.0438-0479.2018015]
点击复制

基于不变尺度特征变换和有界失真映射的受损文物图像匹配方法(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年03期
页码:
449-454
栏目:
研究论文
出版日期:
2019-05-28

文章信息/Info

Title:
Matching method of damaged cultural relic images based on scale invariant feature transform and bounded distortion mapping
文章编号:
0438-0479(2019)03-0449-06
作者:
张 勇12耿国华1*
1.西北大学信息科学与技术学院,陕西 西安 710127; 2.巢湖学院信息工程学院,安徽 巢湖 238000; 3.巢湖学院网络与分布式系统研究所,安徽 巢湖 238000
Author(s):
ZHANG Yong12GENG Guohua1*
1.School of Information Science and Technology,Northwest University,Xi’an 710127,China; 2.School of Information Engineering,Chaohu University,Chaohu 238000,China; 3.Institute of Networks and Distributed Systems,Chaohu University,Chaohu 238000,China
关键词:
保扭曲映射 三角网格 复数 雅可比矩阵 图像匹配
Keywords:
bounded distortion mapping triangular mesh plural Jacobian matrix image matching
分类号:
TP 391
DOI:
10.6043/j.issn.0438-0479.2018015
文献标志码:
A
摘要:
针对受损文物图像这一特殊数据源,提出一种结合不变尺度特征变换(SIFT)和保扭曲映射的图像匹配(SBD)方法.该方法基于SIFT特征建立特征三角网格映射,对网格映射添加保扭曲约束,构建非凸的约束空间,并将属于L0范数问题的目标函数使用代理函数近似.实验结果表明SBD方法可以优化并减少错误匹配,对于解决破损文物图像匹配问题的研究具有较好效果.
Abstract:
An image matching method(SBD)combining scale invariant feature transform(SIFT)and bounded distortion mapping is proposed for the special data source of damaged cultural relic images.The feature triangular mesh mapping is established based on SIFT.In addition,the bounded distortion mapping constraint is added in the method,and the non-convex constraint space is constructed.Furthermore,a proxy function is used to approximate the target function,which belongs to the category of L0 norm.As a result,mismatch pairs can be optimized and reduced,as well as become effective for solving problem of damaged cultural relic images matching.

参考文献/References:

[1] ORON S,DEKEL T,XUE T,et al.Best-buddies similarity:robust template matching using mutual nearest neighbors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(8):1799-1813.
[2] HUANG Z,WEI Z,ZHANG G.RWBD:learning robust weighted binary descriptor for image matching[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,28(7):1553-1564.
[3] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[4] BAY H,ESS A,TUYTELAARS T,et al.Speeded-up robust features(SURF)[J].Computer Vision and Image Understanding,2008,110(3):346-359.
[5] 陈洁,高志强,密保秀,等.引入极线约束的SURF特征匹配算法[J].中国图象图形学报,2016,21(8):1048-1056.
[6] 赵璐璐,耿国华,李康,等.基于SURF和快速近似最近邻搜索的图像匹配算法[J].计算机应用研究,2013,30(3):921-923.
[7] 曹君宇,周浩,高志山,等.基于SURF的图像拼接过程中配准算法的改进[J].云南大学学报(自然科学版),2016,38(6):845-852.
[8] 冯筠,延瑜瑜,赵妍,等.基于学习不变特征变换的兵马俑图像分区匹配[J].光学精密工程,2018,26(7):1774-1783.
[9] CARCASSONI M,HANCOCK E R.Spectral correspondence for point pattern matching[J].Pattern Recognition,2003,36(1):193-204.
[10] LI L,TAN C L.Recognizing planar symbols with severe perspective deformation[J].IEEE Transactions on Software Engineering,2010,32(4):755.
[11] LUO Z X,ZHOU X C,GU D X F.From a projective invariant to some new properties of algebraic hypersurfaces[J].Science China Mathematics,2014,57(11):2273-2284.
[12] 张勇,耿国华.基于拓扑关系和几何特征的图像匹配方法[J].北京师范大学学报(自然科学版),2018,54(2):198-202.
[13] 贾棋,高新凯,罗钟铉,等.基于几何关系约束的特征点匹配算法[J].计算机辅助设计与图形学学报,2015,27(8):1388-1397.
[14] 鲍文霞,余国芬,朱明,等.基于椭圆形度量谱特征的图像匹配算法[J].东南大学学报(自然科学版),2018,48(3):387-392.
[15] ARNFRED J T,WINKLER S,SüSSTRUNK S.Mirror match:reliable feature point matching without geometric constraints[C]∥2013 2nd IAPR Asian Conference on Pattern Recognition.Naha:IEEE,2013:256-260.
[16] LIPMAN Y.Bounded distortion mapping spaces for triangular meshes[J].ACM Transactions on Graphics,2012,31(4):13-15.
[17] EDOARDO A,VIGGO K.On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems[J].Theoretical Computer Science,1998,209(1/2):237-260.
[18] HYDER M M,MAHATA K.An improved smoothed 0 approximation algorithm for sparse representation[J].IEEE Transactions on Signal Processing,2010,58(4):2194-2205.
[19] PANT J K,LU W S,ANTONIOU A.New improved algorithms for compressive sensing based on p Norm[J].IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2014,61(3):198-202.
[20] CHARTRAND R,YIN W.Iteratively reweighted algorithms for compressive sensing[C]∥IEEE International Conference on Acoustics,Speech and Signal Processing.Las Vegas:IEEE,2008:3869-3872.
[21] ANDERSEN E D,ANDERSEN K D.The mosek interior point optimizer for linear programming:an implementation of the homogeneous algorithm[M]∥High performance optimization.Boston:Springer,2000:197-232.

备注/Memo

备注/Memo:
收稿日期:2018-08-29 录用日期:2018-12-06
基金项目:国家自然科学基金(61673319,61731015,61772421,61802311); 国家重点研发项目(2017YFB1402103); 安徽省高校自然科学研究重点项目(KJ2017A451); 陕西省产业创新链项目(2016TZC-G-3-5); 陕西省自然科学基金(2018JM6029); 青岛市自主创新重大专项(2017-4-3-2-xcl); 巢湖学院教学团队项目(ch16jxtd01)
*通信作
更新日期/Last Update: 1900-01-01