|本期目录/Table of Contents|

[1]李冠军,吴承祯*,梁安洁,等.内生真菌对杉木人工林下土壤酶活性的影响[J].厦门大学学报(自然科学版),2019,58(03):366-374.[doi:10.6043/j.issn.0438-0479.201808011]
 LI Guanjun,WU Chengzhen*,LIANG Anjie,et al.Effects of endophytic fungi on soil enzyme activities underCunninghamia lanceolata plantation[J].Journal of Xiamen University(Natural Science),2019,58(03):366-374.[doi:10.6043/j.issn.0438-0479.201808011]
点击复制

内生真菌对杉木人工林下土壤酶活性的影响(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年03期
页码:
366-374
栏目:
研究论文
出版日期:
2019-05-28

文章信息/Info

Title:
Effects of endophytic fungi on soil enzyme activities underCunninghamia lanceolata plantation
文章编号:
0438-0479(2019)03-0366-09
作者:
李冠军1吴承祯2*梁安洁1洪 滔1陈 灿1谢安强1洪 伟1林勇明1李 键1*
1.福建农林大学林学院,福建 福州 350002; 2.武夷学院生态与资源工程学院,福建 南平 354300
Author(s):
LI Guanjun1WU Chengzhen2*LIANG Anjie1HONG Tao1CHEN Can1XIE Anqiang1HONG Wei1LIN Yongming1LI Jian1*
1.College of Forestry,Fujian Agriculture and Forestry University,Fuzhou 350002,China; 2.College of Ecology and Resource Engineering,Wuyi University,Nanping 354300,China
关键词:
杉木 内生真菌 土壤酶活性 凋落叶 质量损失率
Keywords:
Cunninghamia lanceolata endophytic fungi soil enzyme activity leaf litter mass loss rate
分类号:
Q 938.1+3
DOI:
10.6043/j.issn.0438-0479.201808011
文献标志码:
A
摘要:
通过筛选能够提高土壤酶活性的菌株及添加方式,探讨内生真菌对杉木(Cunninghamia lanceolata)人工林下土壤酶活性的影响,以促进叶凋落物分解.采用3株杉木内生真菌青霉菌(Penicillium sp.)CG2(A菌)、黄色镰刀菌(Fusarium culmorum)AY13(B菌)、踝节霉菌(Talaromyces sp.)AJ14(C菌)的单菌株和混菌株,按不同方式(菌丝、菌液)浇施于装有杉木凋落叶和土壤的盆钵内,在处理10,60,120 d后分别取样,测定土壤酶活性和凋落叶质量的变化情况.结果表明:多酚氧化酶活性在混菌丝处理下始终保持在较高水平,菌丝和菌液处理均提高了脲酶和酸性磷酸酶活性,蔗糖酶活性前期(10 d)高于后期(120 d).C菌液处理下(120 d)纤维素酶、木质素过氧化物酶和酸性磷酸酶活性均最高,与对照存在显著差异(p<0.05),分别比对照高56.46%,43.97%和163.65%; BC混菌丝处理下(120 d)多酚氧化酶活性最高,比对照高36.75%(p<0.05); AB混菌丝处理下(10 d)蔗糖酶活性最高,比对照高162.90%(p<0.05); AC混菌液处理下(120 d)脲酶活性最高,比对照高69.78%(p<0.05).凋落叶质量损失率与纤维素酶、脲酶、酸性磷酸酶、木质素过氧化物酶以及混菌处理的多酚氧化酶活性变化趋势相同,菌株种类、添加方式、分解时间及其交互作用对酶活性有显著影响.综上所述,C菌液能最有效地提高纤维素酶、木质素过氧化物酶和酸性磷酸酶活性,BC和AB混菌丝分别对提高多酚氧化酶和蔗糖酶活性最有效,AC混菌液则能最有效地提高脲酶活性.
Abstract:
By screening the strains and the adding methods to increase soil enzyme activities,the effects of endophytic fungi on soil enzyme activities under Chinese fir(Cunninghamia lanceolata)plantation were investigated to promote the decomposition of leaf litter.The single strain and mixed strains of three endophytic fungi of C. lanceolata(Penicillium sp.CG2(A),Fusarium culmorum AY13(B),Talaromyces sp.AJ14(C))were poured into the experimental pots in two ways(mycelia and bacterial solution),and were sampled after 10,60,and 120 d for determination of changes in soil enzyme activity and litter quality.The results showed that the laccase activity was maintained at a high level under the treatment of mixed mycelia.The activities of urease and acid phosphatase were improved under both mycelia and bacterial solution treatments.The activity of sucrase in the early stage(10 d)was higher than that in the later stage(120 d).Cellulase,lignin peroxidase and acid phosphatase activities were significantly different from the control under the treatment of bacterial solution of strain C(120 d)(p<0.05),which were 56.46%,43.79% and 163.65% higher than that of the control,respectively.The laccase activity was 36.75% higher than that of the control under BC mixed mycelia treatment(120 d,p<0.05).The sucrase activity under AB mixed mycelia treatment was 162.90% higher than that of the control(10 d,p<0.05).The urease activity under AC mixed bacterial solution was 69.78% higher than that of the control(120 d,p<0.05).The change of leaf litter mass loss rate was the same as that of cellulase, urease,acid phosphatase and lignin peroxidase activities,as well as the laccase activity under mixed bacterial treatment.The fungus type,addition mode,decomposition time,and the interaction between the three factors have significant effects on enzyme activities.In summary,the bacterial solution of strain C could increase the activities of cellulase, lignin peroxidase and acid phosphatase most efficiently,the mycelia of BC and AB mixed strains could increase the activities of laccase and sucrase most efficiently,and the bacterial solution of AC mixed strains could increase the urease activity most efficiently.

参考文献/References:

[1] 曾小龙.桉树林地土壤酶特性研究进展[J].广东教育学院学报,2009,29(5):97-103.
[2] GARCIA R R,OCHOA V,HINOJOS M B,et al.Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems[J].Soil Biol and Bioch,2008,40(9):2137-2145.
[3] 刘善江,夏雪,陈桂梅,等.土壤酶的研究进展[J].中国农学报,2011,27(21):1-7.
[4] DARI K,BECHET M,BLONDEAU R.Isolation of soil Streptomyces strains capable of degrading humicacid sand analysis of their peroxida seactivity[J].Fems Micro Ecol,1995,16(2):115-122.
[5] MAGNUSO M,CRAWFOR D L.Comparison of extracellular peroxidasean esterase deficient mutants of Streptomycesvi ridosporus T7A[J].Appl Envir on Microbiol,1992,58(3):1070-1072.
[6] 卢庆华,邢孟兰,蔡禄.青霉菌产漆酶的研究及在木质素降解中的应用[J].湖北农业科学,2014,53(10):2379-2382.
[7] 彭程,杨中铎.一株雷公藤内生真菌的化学成分及单胺氧化酶抑制活性研究[J].中药材,2016,39(3):540-543.
[8] 付瑶,史丽娟,孙美丽,等.受黄色镰刀菌侵染的马铃薯薯块的抗氧化酶、细胞壁防御酶及StLTPa1基因的表达特性[J].中国生物防治学报,2016,32(3):388-395.
[9] 舒洪岚.杉木人工林土壤理化性质及酶活性的变化规律[J].贵州农业科学,2010,38(9):81-83,87.
[10] 杨玉盛,邱仁辉,俞新妥,等.杉木连栽土壤微生物及生化特性的研究[J].生物多样性,1999,7(1):1-7.
[11] 陈龙池,汪思龙,陈楚莹.杉木人工林衰退机理探讨[J].应用生态学报,2004,15(10):1953-1957.
[12] 马亚娟,徐福利,王渭玲,等.氮磷提高华北落叶松人工林地土壤养分和酶活性的作用[J].植物营养与肥料学报,2015,21(3):664-674.
[13] 成向荣,袁健军,刘佳,等.间伐对杉木人工林土壤酶和活性有机碳的短期影响[J].中国农学通报,2014,30(4):17-22.
[14] 周丽萍,戚瑞生.不合理施肥对土壤性质的影响及其防治措施探讨[J].甘肃农业科技,2017(1):74-78.
[15] 李艳鹏,贺同鑫,王清奎.施肥对杉木林土壤酶和活性有机碳的影响[J].生态学杂志,2016,35(10):2722-2731.
[16] OLIVEIRA A L M,CANUTO E L,SILVA E E,et al.Survival of endophytic diazotrophic bacteria in soil under different moisture levels[J].Brazilian J Microbiology,2004,35(4):295-299.
[17] 许秀兰,杨春琳,田莎,等.华山松凋落针叶上的真菌多样性及4株真菌的纤维素分解能力[J].林业科学,2016,52(1):80-88.
[18] KOIDE K,OSONO T,TAKEDA H.Fungal succession and decomposition of Camellia japonica leaf litter[J].Ecological Research,2005,20(5):599-609.
[19] 李冠军,梁安洁,洪滔,等.内生真菌对杉木凋落叶质量损失和养分含量的影响[J].应用与环境生物学报,2018,24(6):1211-1220.
[20] 叶宝鉴,兰思仁,李明河,等.福建农林大学校园植物区系特征[J].福建农林大学学报(自然科学版),2013,42(1):51-56.
[21] 朱烨,滕应,张满云,等.三七种植土壤中主要污染物累积及微生物特性变化[J].土壤,2015,47(1):121-127.
[22] 孙华,段玉玺,陈立杰,等.大豆根际促生菌Sneb207对不同种类线虫毒性的研究[J].大豆科学,2009,28(4):683-686.
[23] 胡雲飞,李荣林,杨亦扬,等.内生真菌短密木霉对茶树修剪叶降解及土壤真菌的影响[J].生态学杂志,2015,34(3):820-825.
[24] 陈晏,戴传超,王兴祥,等.施加内生真菌拟茎点霉(Phomopsis sp.)对茅苍术凋落物降解及土壤降解酶活性的影响[J].土壤学报,2010,47(3):537-544.
[25] 林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010:243-262.
[26] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:290-294.
[27] DICK W A,TABATABAI M A.Significance and potential uses of soil enzymes[M]∥Soil microbial ecology:application in agricultural and environmental management.New York:Marcel Dekker,1993:95-125.
[28] KANG H,FREEMAN C.Soil enzyme analysis for leaf litter decomposition inglobal wetlands[J].Communications in Soil Science and Plant Analysis,2009,40(21/22):3323-3334.
[29] 王理德,王方琳,郭春秀,等.土壤酶学硏究进展[J].土壤,2016,48(1):12-21.
[30] 徐雁,向成华,李贤伟.土壤酶的研究概况[J].四川林业科技,2010,31(2):14-20.
[31] GLENN J K,GOLD M H.Purification and characterization of an extracellular Mn(Ⅱ)-dependent peroxidase from the lignin-degrading basidiomycetes,Phancerochaete chrysosporium[J].Arch Biochem Biophys,1985,242(2):329-341.
[32] SARIASLANI F S,DALTON H.Microbial enzymes for oxidation of organic molecules[J].Crit Rev Biotechnol,1989,9(3):171-257.
[33] NASEBY D C,PASCUAL J A,LYNCH J M.Effect of biocontrol strains of Trichoderma on plant growth,Pythium ultimum populations,soil microbial communities and soil enzyme activities[J].J Applied Microbiology,2001,88(1):161-169.
[34] 南丽丽,郁继华,郭全恩.荒漠灌区不同种植年限苜蓿地土壤酶活性的变化研究[J].干旱地区农业研究,2015,33(6):71-76,92.
[35] 吴旺旺,张丽丽,林达,等.氮沉降对凋落叶分解前期土壤酶活性的影响[J].森林与环境学报,2017,37(2):174-180.
[36] 陈法霖,郑华,阳柏苏,等.中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响[J].生态学报,2011,31(11):3027-3035.
[37] PRIETZEL J.Arylsulfatase activities in soils of the Black Forest/ Germany:seasonal variation and effect of(NH4)2SO4 fertilization[J].Soil Biol Biochem,2001,33(10):1317-1328.
[38] 赵方杰.洛桑试验站的长期定位试验:简介及体会[J].南京农业大学学报,2012,35(5):147-153.
[39] HOLGUIN G,BASHAN Y.Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium(Staphylococcus sp.)[J].Soil Biol & Biochem,1996,28(12):1651-1660.
[40] VáZQUEZ M M,CéSAR S,AZCN R,et al.Interactions between arbuscularmycorrizal fungi other microbial inocants(Azospirillum,Pseudomonas,Trichoderma)and their effects on microbial population and enzyme activities in the rhizosphere of maize plants[J].Applied Soil Ecology,2000,15(3):261-272.
[41] 蔡晶晶,段学辉,谢亮,等.三菌混合固态发酵产纤维素酶研究[J].中国生物工程杂志,2013,33(7):57-63.
[42] PASCHOS T,XIROS C,CHRISTAKOPOULOUS P.Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content[J].Industrial and Products,2015,76(12):793-802.
[43] 冯乐,宋福强.外生菌根真菌与丝状真菌混合对红松凋落物降解效能的影响[J].生态科学,2011,30(3):315-320.
[44] 杨承栋,焦如珍,屠星南,等.杉木林下植被对5~15 cm土壤性质的改良[J].林业科学研究,1995(5):514-519.

备注/Memo

备注/Memo:
收稿日期:2018-08-17 录用日期:2018-11-26
基金项目:国家自然科学基金(31400533); 福建农林大学科技创新专项基金(CXZX2016055); 福建农林大学林学院林学高峰学科优秀博硕士培养工程(71201800781)
*通信作者:hmilycau@163.com(李键); fjwcz@126.com(吴承祯)
更新日期/Last Update: 1900-01-01