|本期目录/Table of Contents|

[1]刘志霞,边 红*,刘 敏,等.广义Mycielski图的补图的若干参数[J].厦门大学学报(自然科学版),2019,58(02):288-291.[doi:10.6043/j.issn.0438-0479.201803027]
 LIU Zhixia,BIAN Hong*,LIU Ming,et al.Several parameters of the complement of generalized Mycielskian graph[J].Journal of Xiamen University(Natural Science),2019,58(02):288-291.[doi:10.6043/j.issn.0438-0479.201803027]
点击复制

广义Mycielski图的补图的若干参数(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年02期
页码:
288-291
栏目:
研究论文
出版日期:
2019-03-27

文章信息/Info

Title:
Several parameters of the complement of generalized Mycielskian graph
文章编号:
0438-0479(2019)02-0288-04
作者:
刘志霞1边 红1*刘 敏1于海征2
1.新疆师范大学数学科学学院,乌鲁木齐 新疆 830017; 2.新疆大学数学与系统科学学院,乌鲁木齐 新疆 830046
Author(s):
LIU Zhixia1BIAN Hong1*LIU Ming1YU Haizheng2BIAN HongLIU MingYU Haizheng
1.School of Mathematical Sciences,Xinjiang Normal University, Urumqi 830017,China; 2.College of Mathematics and System Science,Xinjiang University,Urumqi 830046,China
关键词:
广义Mycielskian图 补图 控制数 packing数
Keywords:
generalized Mycielskian graph complement graph domination packing
分类号:
O 157.5
DOI:
10.6043/j.issn.0438-0479.201803027
文献标志码:
A
摘要:
为了寻找一类具有任意大色数但不含三角形的图类,Mycielski提出了一种有趣的图变换,称之为图G的Mycielskian图,记为μ(G).Lam等对μ(G)的定义做了一个自然的推广,提出了广义Mycielskian图(也被Tardif称为cones over图),记为μm(G),其中m代表正整数.本文中给出了广义Mycielskian图的补图的控制数、全控制数、packing数和open packing数的明确结
Abstract:
In a search for triangle-free graphs with arbitrarily large chromatic number,Mycielski has developed a graph transformation that transforms a graph G into a new graph μ(G),which is called the Mycielskian of G.A generalization of this transformation is the generalized Mycielskian μm(G.A generalization of this transformation is the generalized Mycielskian μm(here m denotes a positive integer.This paper investigates the domination,total domination,packing and open packing of the complement of generalized Mycielskian graph.

参考文献/References:

[1] MYCIELSKI J.Sur le colouriage es graphes[J].Colloq Math,1955,3:161-162. [2] FISHERA C D,MCKENNAA A P,BOYERB D E.Hamiltonicity,diameter,domination,packing,and biclique partitions of Mycielski’s graphs[J].Discrete Applied Mathematics,1998,84:93-105. [3] CHANG G.J,HUANG L.ZHU X.Circular chromatic numbers of Mycielski’s graphs[J].Discrete Math,1999,205:23-37. [4] LARSEN M,PROPP J,ULLMAN D.The fractional chromatic number of Mycielski’s graphs[J].Graph Theory,1995,19:411-416. [5] FAN G.Circular chromatic number and Mycielski graphs[J].Combinatoria,2004,24(1):127-135. [6] HAJIABOLHASSAN H,ZHU X.The circular chromatic number and Mycielski construction[J].Graph Theory,2003,44:106-115. [7] HUANG L,CHANG G J.The circular chromatic number of the Mycielskian of Gkd[J].Graph Theory,1999,32:63-71. [8] LIN W,WU J,LAM P C B,et al.Several parameters of generalized Mycielskians[J].Discrete Applied Mathematics,2006,154:1173-1182. [9] TARDIF C.Fractional chromatic numbers of cones over graphs[J].Graph Theory,2001,38:87-94. [10] LIN W,LAM P C B,SHIU W C.Circular chromatic numbers of the generalized Mycielskians of cycles[J].Nanjing Univ Math Biquarterly,2006,23(2):232-241. [11] LAM P C B,GU G,LIN W,et al.Circular chromatic number and a generalization of the construction of Mycielski[J].Combin Theory Ser,2003,89:195-205. [12] AMALORPAVA J,DHANALAKSHMI K,MICHAELRAJ L B.The rst and the second Zagreb indices of the generalized Mycielskian of graphs[J].Electronic Notes in Discrete Mathematics,2016,53:239-258.

备注/Memo

备注/Memo:
收稿日期:2018-03-12 录用日期:2018-10-24
基金项目:国家自然科学基金(11361062,61662079); 2015年度新疆自治区青年科技创新人才培养工程项目(qn2015yx010)
*通信作者:bh1218@163.com
更新日期/Last Update: 1900-01-01