|本期目录/Table of Contents|

[1]郭 斌,傅骏驰,渠亚洲,等.等离子体增强热氧化法制备氧化锌纳米棒及其反应机制[J].厦门大学学报(自然科学版),2019,58(02):254-259.[doi:10.6043/j.issn.0438-0479.201803023]
 GUO Bin,FU Junchi,QU Yazhou,et al.Synthesis and reaction mechanism of zinc oxide nanorods produced by plasma-enhanced thermal oxidation[J].Journal of Xiamen University(Natural Science),2019,58(02):254-259.[doi:10.6043/j.issn.0438-0479.201803023]
点击复制

等离子体增强热氧化法制备氧化锌纳米棒及其反应机制(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年02期
页码:
254-259
栏目:
研究论文
出版日期:
2019-03-27

文章信息/Info

Title:
Synthesis and reaction mechanism of zinc oxide nanorods produced by plasma-enhanced thermal oxidation
文章编号:
0438-0479(2019)02-0254-06
作者:
郭 斌12傅骏驰12渠亚洲1程其进12*
1.厦门大学能源学院,福建 厦门 361102; 2.厦门大学深圳研究院,广东 深圳 518000
Author(s):
GUO Bin12FU Junchi12QU Yazhou1CHENG Qijin12*
1.College of Energy,Xiamen University,Xiamen 361102,China; 2.Shenzhen Research Institute of Xiamen University,Shenzhen 518000,China
关键词:
氧化锌 等离子体 纳米棒 生长机制 热氧化
Keywords:
ZnO plasma nanorods growth mechanism thermal oxidation
分类号:
O 047
DOI:
10.6043/j.issn.0438-0479.201803023
文献标志码:
A
摘要:
提出一种等离子体热氧化法,即通过自制的等离子体增强水平管式炉沉积系统,将金属锌箔在氧气与氩气混合气体中放电生成氧化锌纳米棒,并考察了反应温度、氩气与氧气的流量比以及放电电流对生成的氧化锌的形貌和微观结构的影响.结果发现:在反应温度为500 ℃、氩气与氧气流量比(体积比)为9:1时,有比较均匀、稳定的氧化锌纳米棒的生成; 并且随着电流值不断增大,氧化锌纳米棒变长.此外,还提出了在等离子体条件下合成氧化锌纳米棒的生长机制:金属锌在适当的温度条件下加热,形成锌蒸汽并在锌箔表面凝结成金属颗粒; 然后在O2-Ar气氛中,在等离子体放电过程中O2能有效地电离为O+、O2+离子,并在氩气辅助下进一步被等离子体转化为活化的氧原子并与锌反应形成氧化锌核,再向富氧的区域延伸,形成氧化锌纳米棒.
Abstract:
A new method of plasma thermal oxidation(i.e.,custom-made plasma-enhanced horizontal tube furnace deposition system)was used to fabricate ZnO nanorods under the discharge of oxygen and argon gases.The morphology and microstructure of the synthesized single-crystal ZnO nanorods could be controlled by changing the reaction temperature,the gas flow rate ratio of argon to oxygen,as well as the discharge current.It was found that,when the reaction temperature was 500 ℃ and the argon to oxygen flow ratio was 9:1,uniform ZnO nanorods were formatted,and the synthesized ZnO nanorods grew longer with the increase in the discharge current.In addition,a growth mechanism for the synthesis of ZnO nanorods under the plasma condition was proposed.The growth process is that the metal zinc is heated at a suitable temperature to form zinc vapor and condensed into metal particles on the surface of zinc foil.Then in O2-Ar atmosphere,O2 can be effectively ionized into O+,O2+ ions during the plasma discharge process.The ionized oxygen ions can be transformed into activated oxygen by plasma assisted by argon,and then reacts with zinc to form a ZnO nucleus and extends to the oxygen enriched region to form ZnO nanorods.A new method of plasma thermal oxidation(i.e.,custom-made plasma-enhanced horizontal tube furnace deposition system)was used to fabricate ZnO nanorods under the discharge of oxygen and argon gases.The morphology and microstructure of the synthesized single-crystal ZnO nanorods could be controlled by changing the reaction temperature,the gas flow rate ratio of argon to oxygen,as well as the discharge current.It was found that,when the reaction temperature was 500 ℃ and the argon to oxygen flow ratio was 9:1,uniform ZnO nanorods were formatted,and the synthesized ZnO nanorods grew longer with the increase in the discharge current.In addition,a growth mechanism for the synthesis of ZnO nanorods under the plasma condition was proposed.The growth process is that the metal zinc is heated at a suitable temperature to form zinc vapor and condensed into metal particles on the surface of zinc foil.Then in O2-Ar atmosphere,O2 can be effectively ionized into O+,O2+ ions during the plasma discharge process.The ionized oxygen ions can be transformed into activated oxygen by plasma assisted by argon,and then reacts with zinc to form a ZnO nucleus and extends to the oxygen enriched region to form ZnO nanorods.

参考文献/References:

[1] REN S,BAI Y F,CHEN J,et al.Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation[J].Mater Lett,2007,61:666-670.
[2] ZHANG Y S,YU K,JIANG D S,et al.Zinc oxide nanorod and nanowire for humidity sensor[J].Appl Surf Sci,2005,242(1):212-217.
[3] CHOOPUN S,TUBTIMTAE A,SANTHAVEESUK T,et al.Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells[J].Appl Surf Sci,2009,256(4):998-1002.
[4] DAI Y,ZHANG Y,BAI Y Q,et al.Bicrystalline zinc oxide nanowires[J].Chem Phys Lett,2003,375(1):96-101.
[5] HO S T,WANG C Y,LIU H L,et al.Catalyst-free selective-area growth of vertically aligned zinc oxide nanowires[J].Chem Phys Lett,2008,463(1):141-144.
[6] SEKAR A,KIM S H,UMAR A,et al.Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders[J].J Cryst Growth,2005,277(1):471-478.
[7] SHEN G Z,BANDO Y,LIU B D,et al.Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process[J].Adv Funct Mater,2006,16(3):410-416.
[8] GHOSHAL T,BISWAS S,KAR S,et al.Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process[J].Nanotechnology,2008,19(6):065606.
[9] DING Y,WANG Z L.Electron energy-loss spectroscopy study of ZnO nanobelts[J].J Electron Microsc,2005,54(3):287-291.
[10] HSUEH T J,HSU C L.Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles[J].Sensors and Actuators B:Chemical,2008,131(2):572-576.
[11] KODAMBAKA S,TERSOFF J,REUTER M C,et al.Germanium nanowire growth below the eutectic temperature[J].Science,2007,316(5825):729-732.
[12] YANG R S,WANG Z L.Interpenetrative and transverse growth process of self-catalyzed ZnO nanorods[J].Solid State Communications,2005,134(11):741-745.
[13] LIANG H Q,PAN L Z,LIU Z J.Synthesis and photolumi-nescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors[J].Mater Lett,2008,62(12):1797-1800.
[14] JEONG M C,OH B Y,LEE W,et al.Comparative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition(MOCVD)[J].J Cryst Growth,2004,268(1/2):149-154.
[15] CHA S N,SONG B G,JANG J E,et al.Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer[J].Nanotechnology,2008,19(23):235601.
[16] KIM S,JEONG M C,OH B Y,et al.Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering[J].J Cryst Growth,2006,290(2):485-489.
[17] FENG L B,LIU A H,LIU M,et al.Synthesis,characteri-zation and optical properties of flower-like ZnO nanorods by non-catalytic thermal evaporation[J].J Alloys Compd,2010,492(1):427-432.
[18] ELHAG S,IBUPOTO Z H,KHRANOVSKYY V,et al.Habit-modifying additives and their morphological consequences on photoluminescence and glucose sensing properties of ZnO nanostructures,grown via aqueous chemical synthesis[J].Vac,2015,116:21-26.
[19] KONGJAI K,CHOOPUN S,HONGSITH N,et al.Zinc oxide whiskers by thermal oxidation method[J].Chiang Mai J Sci,2011,38(1):39-46.
[20] LEE S H,LEE S W,OH T,et al.Direct observation of plasmon-induced interfacial charge separation in metal/semiconductor hybrid nanostructures by measuring surface potentials[J].Nano Lett,2018,18(1):109-116.
[21] BAO Y,WANG C,MA J Z.A two-step hydrothermal route for synthesis hollow urchin-like ZnO microspheres[J].Ceram Int,2016,42(8):10289-10296.
[22] ZHONG M,GUO W M,LI C L,et al.Morphology-controllable growth of vertical ZnO nanorod arrays by a polymer soft template method:growth mechanism and optical properties[J].J Alloys compd,2017,725:1018-1026.
[23] MAO C Y,XIANG Y M,LIU X M,et al.Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures[J].ACS Nano,2017,11(9):9010-9021.
[24] ZHANG Y,JIA H B,LUO X H,et al.Synthesis,micro-structure,and growth mechanism of dendrite ZnO nanowires[J].J Phys Chem B,2003,107(33):8289-8293.
[25] CHENG Q J,OSTRIKOV K K.Temperature-dependent growth mechanisms of low-dimensional ZnO nanostructures[J].CrystEngComm,2011,13(10):3455.
[26] OSTRIKOV K K,LEVCHENKO I,CVELBAR U,et al.From nucleation to nanowires:a single-step process in reactive plasmas[J].Nanoscale,2010,2(10):2012-2027.
[27] CHEN W Z,WANG B B,QU Y Z,et al.Catalyst-free growth and tailoring morphology of zinc oxide nanostructures by plasma-enhanced deposition at low temperature[J].J Nanopart Res,2017,19(3):95.[1] REN S,BAI Y F,CHEN J,et al.Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation[J].Mater Lett,2007,61:666-670.
[2] ZHANG Y S,YU K,JIANG D S,et al.Zinc oxide nanorod and nanowire for humidity sensor[J].Appl Surf Sci,2005,242(1):212-217.
[3] CHOOPUN S,TUBTIMTAE A,SANTHAVEESUK T,et al.Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells[J].Appl Surf Sci,2009,256(4):998-1002.
[4] DAI Y,ZHANG Y,BAI Y Q,et al.Bicrystalline zinc oxide nanowires[J].Chem Phys Lett,2003,375(1):96-101.
[5] HO S T,WANG C Y,LIU H L,et al.Catalyst-free selective-area growth of vertically aligned zinc oxide nanowires[J].Chem Phys Lett,2008,463(1):141-144.
[6] SEKAR A,KIM S H,UMAR A,et al.Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders[J].J Cryst Growth,2005,277(1):471-478.
[7] SHEN G Z,BANDO Y,LIU B D,et al.Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process[J].Adv Funct Mater,2006,16(3):410-416.
[8] GHOSHAL T,BISWAS S,KAR S,et al.Direct synthesis of ZnO nanowire arrays on Zn foil by a simple thermal evaporation process[J].Nanotechnology,2008,19(6):065606.
[9] DING Y,WANG Z L.Electron energy-loss spectroscopy study of ZnO nanobelts[J].J Electron Microsc,2005,54(3):287-291.
[10] HSUEH T J,HSU C L.Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles[J].Sensors and Actuators B:Chemical,2008,131(2):572-576.
[11] KODAMBAKA S,TERSOFF J,REUTER M C,et al.Germanium nanowire growth below the eutectic temperature[J].Science,2007,316(5825):729-732.
[12] YANG R S,WANG Z L.Interpenetrative and transverse growth process of self-catalyzed ZnO nanorods[J].Solid State Communications,2005,134(11):741-745.
[13] LIANG H Q,PAN L Z,LIU Z J.Synthesis and photolumi-nescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors[J].Mater Lett,2008,62(12):1797-1800.
[14] JEONG M C,OH B Y,LEE W,et al.Comparative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition(MOCVD)[J].J Cryst Growth,2004,268(1/2):149-154.
[15] CHA S N,SONG B G,JANG J E,et al.Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer[J].Nanotechnology,2008,19(23):235601.
[16] KIM S,JEONG M C,OH B Y,et al.Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering[J].J Cryst Growth,2006,290(2):485-489.
[17] FENG L B,LIU A H,LIU M,et al.Synthesis,characteri-zation and optical properties of flower-like ZnO nanorods by non-catalytic thermal evaporation[J].J Alloys Compd,2010,492(1):427-432.
[18] ELHAG S,IBUPOTO Z H,KHRANOVSKYY V,et al.Habit-modifying additives and their morphological consequences on photoluminescence and glucose sensing properties of ZnO nanostructures,grown via aqueous chemical synthesis[J].Vac,2015,116:21-26.
[19] KONGJAI K,CHOOPUN S,HONGSITH N,et al.Zinc oxide whiskers by thermal oxidation method[J].Chiang Mai J Sci,2011,38(1):39-46.
[20] LEE S H,LEE S W,OH T,et al.Direct observation of plasmon-induced interfacial charge separation in metal/semiconductor hybrid nanostructures by measuring surface potentials[J].Nano Lett,2018,18(1):109-116.
[21] BAO Y,WANG C,MA J Z.A two-step hydrothermal route for synthesis hollow urchin-like ZnO microspheres[J].Ceram Int,2016,42(8):10289-10296.
[22] ZHONG M,GUO W M,LI C L,et al.Morphology-controllable growth of vertical ZnO nanorod arrays by a polymer soft template method:growth mechanism and optical properties[J].J Alloys compd,2017,725:1018-1026.
[23] MAO C Y,XIANG Y M,LIU X M,et al.Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures[J].ACS Nano,2017,11(9):9010-9021.
[24] ZHANG Y,JIA H B,LUO X H,et al.Synthesis,micro-structure,and growth mechanism of dendrite ZnO nanowires[J].J Phys Chem B,2003,107(33):8289-8293.
[25] CHENG Q J,OSTRIKOV K K.Temperature-dependent growth mechanisms of low-dimensional ZnO nanostructures[J].CrystEngComm,2011,13(10):3455.
[26] OSTRIKOV K K,LEVCHENKO I,CVELBAR U,et al.From nucleation to nanowires:a single-step process in reactive plasmas[J].Nanoscale,2010,2(10):2012-2027.
[27] CHEN W Z,WANG B B,QU Y Z,et al.Catalyst-free growth and tailoring morphology of zinc oxide nanostructures by plasma-enhanced deposition at low temperature[J].J Nanopart Res,2017,19(3):95.

备注/Memo

备注/Memo:
收稿日期:2018-03-08 录用日期:2018-05-17
基金项目:深圳市基础研究项目(JCYJ20170306141238532)
*通信作者:qijin.cheng@xmu.edu.cn
更新日期/Last Update: 1900-01-01