|本期目录/Table of Contents|

[1]邱雨微,郑徐跃,詹翔燕,等.耦合可再生能源的分布式联供系统设计及运行策略优化[J].厦门大学学报(自然科学版),2019,58(01):103-110.[doi:10.6043/j.issn.0438-0479.201803026]
 QIU Yuwei,ZHENG Xuyue,ZHAN Xiangyan,et al.The optimal design and operation strategy for combined cooling,heating and power system coupled with renewable energies[J].Journal of Xiamen University(Natural Science),2019,58(01):103-110.[doi:10.6043/j.issn.0438-0479.201803026]
点击复制

耦合可再生能源的分布式联供系统设计及运行策略优化(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年01期
页码:
103-110
栏目:
研究论文
出版日期:
2019-01-24

文章信息/Info

Title:
The optimal design and operation strategy for combined cooling,heating and power system coupled with renewable energies
文章编号:
0438-0479(2019)01-0103-08
作者:
邱雨微郑徐跃詹翔燕朱兴仪孟 超赵英汝*
厦门大学能源学院,福建 厦门 361102
Author(s):
QIU YuweiZHENG XuyueZHAN XiangyanZHU XingyiMENG ChaoZHAO Yingru*
College of Energy, Xiamen University, Xiamen 361102, China
关键词:
数学优化 可再生能源 风力发电 光伏
Keywords:
mathematical optimization renewable energy wind power photovoltaic cell
分类号:
TK 472
DOI:
10.6043/j.issn.0438-0479.201803026
文献标志码:
A
摘要:
基于通用数学建模(the general algebraic modeling system, GAMS)软件,针对耦合可再生能源技术的分布式冷热电联供(renewable energy coupled combined cooling, heating and power, RCCHP)系统构建数学模型,并结合上海市某综合区域为案例,选取2项经济性指标和1项环境性指标,对4种情景下RCCHP系统的运行情况进行模拟计算与分析,分析该系统的设备组合、逐时运行策略、经济性与环境性,同时分析了可再生清洁发电技术与能源政策对分布式多联供系统的影响.结果表明,夜间采用电网购电与风力发电互补供应电负荷、白天使用CCHP耦合风力发电联合互补供能是经济性最佳的运行策略,能够抑制可再生能源的波动性并且实现多种电能的完全消纳.与传统分产(separated production,SP)系统相比,RCCHP系统能够极大地降低系统对电网的依赖度,减少耗气量,同时极大地提高系统的环境性,但其较高的初始投资费用限制了其经济性与实用性.
Abstract:
To evaluate the economic and environmental performance of the combined cooling, heating and power(CCHP)system coupled with wind power and photovoltaic cell, a mixed integer nonlinear model is formulated in GAMS to determine the optimal technology combination, capacity and operation strategy taking the separated production(SP)system as reference. In this paper, net present value(NPV)and internal rate of return(IRR)are introduced as economic indicators, and CO2 emission reduction rate(CER)as the environmental indicator, to perform multi-objective analysis. The model is applied to a comprehensive area in Shanghai by four different scenarios to figure out the contribution made by renewable energy to the CCHP system. The results illustrate that a combination of electricity purchased from the grid, generated by wind turbines for electric load balance at night and CCHP system coupled with renewable energy operating in daytime, is capable of eliminating the fluctuation of renewable energy and meeting power consumption. Compared with SP system, CCHP system coupled with renewable energies(RCCHP)system is a potentially interesting option to reduce grid dependence and gas fuel consumption and improve environment benefit. However, high initial investment costs of RCCHP system limit its economic performance and practicality.To evaluate the economic and environmental performance of the combined cooling, heating and power(CCHP)system coupled with wind power and photovoltaic cell, a mixed integer nonlinear model is formulated in GAMS to determine the optimal technology combination, capacity and operation strategy taking the separated production(SP)system as reference. In this paper, net present value(NPV)and internal rate of return(IRR)are introduced as economic indicators, and CO2 emission reduction rate(CER)as the environmental indicator, to perform multi-objective analysis. The model is applied to a comprehensive area in Shanghai by four different scenarios to figure out the contribution made by renewable energy to the CCHP system. The results illustrate that a combination of electricity purchased from the grid, generated by wind turbines for electric load balance at night and CCHP system coupled with renewable energy operating in daytime, is capable of eliminating the fluctuation of renewable energy and meeting power consumption. Compared with SP system, CCHP system coupled with renewable energies(RCCHP)system is a potentially interesting option to reduce grid dependence and gas fuel consumption and improve environment benefit. However, high initial investment costs of RCCHP system limit its economic performance and practicality.

参考文献/References:

[1] POULLIKKAS A.Implementation of distributed generation technologies in isolated power systems[J].Renewable and Sustainable Energy Reviews,2016,11(7):30-56.
[2] ZHENG X Y,QIUY W,ZHANGX Y.Optimization based planning of urban energy systems:retrofitting a Chinese industrial park as a case study[J].Energy,2017,139(7):31-41.
[3] BIEZMA M V,SAN CRISTóBAL J R.Investment criteria for the selection of cogeneration plants:a state of the art review[J].Applied Thermal Engineering,2009,26(12):583-588.
[4] MORAN A,MAGO P J,CHAMRA L M.Thermoeconomic modeling of micro-CHP(micro-cooling heating and power)for small commercial applications[J].International Journal of Energy Research,2012,32(9):808-823.
[5] 孔祥强,李华,曲磊,等.楼宇冷热电联供系统节能性研究[J].能源工程,2010(2):62-65.
[6] CARDONA E,PIACENTINO A.Matching economical,energetic,and environmental benefits:an analysis for hybrid CCHP-heat pump systems[J].Energy,2006,31(4):490-515.
[7] 吴杰康,熊焰.风、水、气互补发电模型的建立及求解[J].电网技术,2014,38(3):603-609.
[8] LOZANO M A,CARVALHO M,SERRA L M.Operational strategy and marginal costs in simple trigeneration systems[J].Energy,2009,34:2001-2008.
[9] 赵峰,张承慧,孙波,等.冷热电联供系统的三级协同整体优化设计方法[J].中国电机工程学报,2015,35(15):3785-3793.
[10] REN H B,GAO W J.A MILP model for integrated plan and evaluation of distributed energy systems[J].Applied Energy,2010,87(5):1001-1014.
[11] WANG X S,YANG C,HUANG M M,et al.Multi-objective optimization of a combined cooling,heating and power system driven by solar energy [J].Energy Conversion and Management,2015,89(9):289-297.
[12] CAO J,LIU F.Simulation and optimization of the performance in the air-conditioning season of a BCHP system in China[J].Energy and Buildings,2015,40(3):185-192.
[13] 付林,李辉.天然气热电冷联供技术及应用[M].北京:中国工业出版社,2008:12-13.
[14] MAGO P J,CHAMRA L M.Analysis and optimization of CCHP system based on energy,economical,and environmental consideration[J].Energy and Buildings,2011,10(41):1099-1106.
[15] 周任军,冉晓洪,毛发龙,等.分布式冷热电三联供系统节能协调优化调度[J].电网技术,2012,36(6):8-14.
[16] KONG X Q,WANG R Z,LI Y,et al.Optimal operation of a micro-combined cooling,heating and power system driven by a gas engine[J].Energy Conversion and Management,2009,50(3):530-538.
[17] LOZANO M A,RAMOS J C,CARVALHO M,et al.Structure optimization of energy supply systems in tertiary sector buildings[J].Energy and Buildings,2013,41(10):1063-1075.
[18] 刘豪,朱彤,张涛.上海地区不同类型建筑的CCHP-ORC系统评价与分析[J].中国电机工程学报,2016,36(12):3198-3205.
[19] LIU M,SHI Y,FANG F.A new operation strategy for CCHP systems with hybrid chillers[J].Applied Energy,2012,95(11):164-173.
[20] 霍小亮,周伟国,阮应君.楼宇三联供系统设备容量与运行策略集成优化[J].天然气工业,2009(8):119-122.
[21] GüLEN S C.Principal engineer gas turbine combined cycle fast start:the physics behind the concept[J].Power Engineering,2013,6(4):1-3.
[22] 金红光,郑丹星,徐建忠.分布式冷热电联产系统装置及应用[M].北京:中国电力出版社,2010:41-42.
[23] 熊焰,吴杰康,王强,等.风光气储互补发电的冷热电联供优化协调模型及求解方法[J].中国电机工程学报,2015,35(14):3616-3625.
[24] ZHENG X Y,WU G C,QIU Y W.A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China [J].Apply Energy,2018,210:1126-1140.[1] POULLIKKAS A.Implementation of distributed generation technologies in isolated power systems[J].Renewable and Sustainable Energy Reviews,2016,11(7):30-56.
[2] ZHENG X Y,QIUY W,ZHANGX Y.Optimization based planning of urban energy systems:retrofitting a Chinese industrial park as a case study[J].Energy,2017,139(7):31-41.
[3] BIEZMA M V,SAN CRISTóBAL J R.Investment criteria for the selection of cogeneration plants:a state of the art review[J].Applied Thermal Engineering,2009,26(12):583-588.
[4] MORAN A,MAGO P J,CHAMRA L M.Thermoeconomic modeling of micro-CHP(micro-cooling heating and power)for small commercial applications[J].International Journal of Energy Research,2012,32(9):808-823.
[5] 孔祥强,李华,曲磊,等.楼宇冷热电联供系统节能性研究[J].能源工程,2010(2):62-65.
[6] CARDONA E,PIACENTINO A.Matching economical,energetic,and environmental benefits:an analysis for hybrid CCHP-heat pump systems[J].Energy,2006,31(4):490-515.
[7] 吴杰康,熊焰.风、水、气互补发电模型的建立及求解[J].电网技术,2014,38(3):603-609.
[8] LOZANO M A,CARVALHO M,SERRA L M.Operational strategy and marginal costs in simple trigeneration systems[J].Energy,2009,34:2001-2008.
[9] 赵峰,张承慧,孙波,等.冷热电联供系统的三级协同整体优化设计方法[J].中国电机工程学报,2015,35(15):3785-3793.
[10] REN H B,GAO W J.A MILP model for integrated plan and evaluation of distributed energy systems[J].Applied Energy,2010,87(5):1001-1014.
[11] WANG X S,YANG C,HUANG M M,et al.Multi-objective optimization of a combined cooling,heating and power system driven by solar energy [J].Energy Conversion and Management,2015,89(9):289-297.
[12] CAO J,LIU F.Simulation and optimization of the performance in the air-conditioning season of a BCHP system in China[J].Energy and Buildings,2015,40(3):185-192.
[13] 付林,李辉.天然气热电冷联供技术及应用[M].北京:中国工业出版社,2008:12-13.
[14] MAGO P J,CHAMRA L M.Analysis and optimization of CCHP system based on energy,economical,and environmental consideration[J].Energy and Buildings,2011,10(41):1099-1106.
[15] 周任军,冉晓洪,毛发龙,等.分布式冷热电三联供系统节能协调优化调度[J].电网技术,2012,36(6):8-14.
[16] KONG X Q,WANG R Z,LI Y,et al.Optimal operation of a micro-combined cooling,heating and power system driven by a gas engine[J].Energy Conversion and Management,2009,50(3):530-538.
[17] LOZANO M A,RAMOS J C,CARVALHO M,et al.Structure optimization of energy supply systems in tertiary sector buildings[J].Energy and Buildings,2013,41(10):1063-1075.
[18] 刘豪,朱彤,张涛.上海地区不同类型建筑的CCHP-ORC系统评价与分析[J].中国电机工程学报,2016,36(12):3198-3205.
[19] LIU M,SHI Y,FANG F.A new operation strategy for CCHP systems with hybrid chillers[J].Applied Energy,2012,95(11):164-173.
[20] 霍小亮,周伟国,阮应君.楼宇三联供系统设备容量与运行策略集成优化[J].天然气工业,2009(8):119-122.
[21] GüLEN S C.Principal engineer gas turbine combined cycle fast start:the physics behind the concept[J].Power Engineering,2013,6(4):1-3.
[22] 金红光,郑丹星,徐建忠.分布式冷热电联产系统装置及应用[M].北京:中国电力出版社,2010:41-42.
[23] 熊焰,吴杰康,王强,等.风光气储互补发电的冷热电联供优化协调模型及求解方法[J].中国电机工程学报,2015,35(14):3616-3625.
[24] ZHENG X Y,WU G C,QIU Y W.A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China [J].Apply Energy,2018,210:1126-1140.

备注/Memo

备注/Memo:
收稿日期:2018-03-11 录用日期:2018-05-23
基金项目:福建省科技计划引导性项目(2018H0036)
*通信作者:yrzhao@xmu.edu.cn
更新日期/Last Update: 1900-01-01