|本期目录/Table of Contents|

[1]陈信任,张 帆,池梦媛,等.铜铝锰钛形状记忆合金的微观组织、超弹性和形状记忆效应[J].厦门大学学报(自然科学版),2019,58(01):40-47.[doi:10.6043/j.issn.0438-0479.201803014]
 CHEN Xinren,ZHANG Fan,CHI Mengyuan,et al.Microstructure,superelasticity and shape memory effect of Cu-Al-Mn-Ti shape memory alloy[J].Journal of Xiamen University(Natural Science),2019,58(01):40-47.[doi:10.6043/j.issn.0438-0479.201803014]
点击复制

铜铝锰钛形状记忆合金的微观组织、超弹性和形状记忆效应(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年01期
页码:
40-47
栏目:
研究论文
出版日期:
2019-01-24

文章信息/Info

Title:
Microstructure,superelasticity and shape memory effect of Cu-Al-Mn-Ti shape memory alloy
文章编号:
0438-0479(2019)01-0040-08
作者:
陈信任1张 帆1池梦媛1张积勋1刘兴军1 2王翠萍1杨水源1*
1.厦门大学材料学院,福建 厦门361005; 2.哈尔滨工业大学(深圳)材料科学与工程学院,广东 深圳 518055
Author(s):
CHEN Xinren1ZHANG Fan1CHI Mengyuan1ZHANG Jixun1 LIU Xingjun12WANG Cuiping1YANG Shuiyuan1*
1.College of Materials,Xiamen University,Xiamen 361005,China; 2.School of Materials Science and Engineering,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China
关键词:
Cu-Al-Mn基形状记忆合金 马氏体稳定化 超弹性 形状记忆效应
Keywords:
Cu-Al-Mn-based shape memory alloy martensite stabilization superelasticity shape memory effect
分类号:
TG 146.1; O 792
DOI:
10.6043/j.issn.0438-0479.201803014
文献标志码:
A
摘要:
制备了5种掺杂Ti的Cu-Al-Mn基形状记忆合金,并对其显微组织、马氏体相变、超弹性和形状记忆效应进行研究.结果表明,Cu-Al-Mn-Ti形状记忆合金组织中存在两种L21相,包括L21-Cu2AlMn母相和L21-Cu2TiAl析出相.在变形过程中,应力诱发了L21-Cu2AlMn母相到马氏体相的相转变,由于存在弥散的L21-Cu2TiAl相,部分应力诱发马氏体相发生稳定化.因此,制备的5种成分的形状记忆合金(Cu-13.3Al-9.7Mn-4.3Ti、Cu-12.4Al-5.0Mn-4.3Ti、Cu-12.3Al-6.8Mn-4.2Ti、Cu-12.7Al-9.8Mn-2.1Ti和Cu-12.9Al-5.3Mn-2.8Ti)在室温下变形的同时具有超弹性和形状记忆效应.
Abstract:
Five types of Cu-Al-Mn-based shape memory alloy doped with Ti were synthetized and their microstructure,martensitic transformation,superelasticity,and shape memory effect were studied.The results show that there are two kinds of L21 phase in the microstructure of Cu-Al-Mn-Ti shape memory alloy,including the parent phase of L21-Cu2AlMn and the precipitated phase of L21-Cu2TiAl.The stress induces the phase transformation of L21-Cu2AlMn parent phase to martensite phase during deformation.The dispersed L21-Cu2TiAl phase has the effect of precipitation strengthening,which induces the stabilization of martensite phase by partial stress.Therefore,five types of Cu-Al-Mn-Ti shape memory alloys,Cu-13.3Al-9.7Mn-4.3Ti,Cu-12.4Al-5.0Mn-4.3Ti,Cu-12.3Al-6.8Mn-4.2Ti,Cu-12.7Al-9.8Mn-2.1Ti and Cu-12.9Al-5.3Mn-2.8Ti,not only show superelasticity,but also have shape memory effect in deformation at room temperature.

参考文献/References:

[1] OTSUKA K,WAYMAN C M.Shape memory materials[M].New York:Cambridge University Press,1998:27-44.
[2] JANI J M,LEARY M,SUBIC A,et al.A review of shape memory alloy research,applications and opportunities[J].Materials & Design,2014,56:1078-1113.
[3] OTSUKA K,REN X.Recent developments in the research of shape memory alloys[J].Intermetallics,1999,7(5):511-528.
[4] VAN HUMBEECK J.Non-medical applications of shape memory alloys[J].Materials Science and Engineering A,1999,273:134-148.
[5] 黄海友,王伟丽,刘记立,等.Cu基形状记忆合金的应用进展[J].中国材料进展,2016,35(12):919-926.
[6] PERKINS J,MUESING W E.Martensitic transformation cycling effects in Cu-Zn-Al shape memory alloys[J].Metallurgical Transactions A,1983,14(1):33-36.
[7] OTSUKA K,WAYMAN C M,NAKAI K,et al.Superela-sticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys[J].Acta Metallurgica,1976,24(3):207-226.
[8] SUTOU Y,OMORI T,KAINUMA R,et al.Ductile Cu-Al-Mn based shape memory alloys:general properties and applications[J].Materials Science and Technology,2008,24(8):896-901.
[9] SUN L,HUANG W M,DING Z,et al.Stimulus-responsive shape memory materials:a review[J].Materials & Design,2012,33:577-640.
[10] SUTOU Y,OMORI T,WANG J J,et al.Characteristics of Cu-Al-Mn-based shape memory alloys and their applications[J].Materials Science and Engineering A,2004,378(1/2):278-282.
[11] MATLAKHOVA L A,PEREIRA E C,MATLAKHOV A N,et al.Mechanical behavior and fracture characteri-zation of a monocrystalline Cu-Al-Ni subjected to thermal cycling treatments under load[J].Materials Charac-terization,2008,59(11):1630-1637.
[12] SUTOU Y,KAINUMA R,ISHIDA K.Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys[J].Materials Science and Engineering A,1999,273:375-379.
[13] HURTADO I,RATCHEV P,VAN HUMBEECK J,et al.A fundamental study of the χ-phase precipitation in Cu-Al-Ni-Ti-(Mn)shape memory alloys[J].Acta Materialia,1996,44(8):3299-3306.
[14] CANBAY C A,GENC Z K,SEKERCI M.Thermal and structural characterization of Cu-Al-Mn-X(Ti,Ni)shape memory alloys[J].Applied Physics A,2014,115(2):371-377.
[15] SUTOU Y,KOEDA N,OMORI T,et al.Effects of aging on stress-induced martensitic transformation in ductile Cu-Al-Mn-based shape memory alloys[J].Acta Materia-lia,2009,57(19):5759-5770.
[16] YANG S Y,OMORI T,WANG C P,et al.A jumping shape memory alloy under heat[J].Scientific Reports,2016,6:21754.
[17] YANG S Y,ZHANG F,WU J L,et al.Microstructure characterization,stress-strain behavior,superelasticity and shape memory effect of Cu-Al-Mn-Cr shape memory alloys[J].Journal of Materials Science,2017,52(10):5917-5927.
[18] YANG S Y,ZHANG F,WU J L,et al.Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys[J].Materials & Design,2017,115:17-25.
[19] SUBRAMANIAN P R,CHAKRABARTI D J,LAU-GHLIN D E.Phase diagrams of binary copper alloys[M].Geauga:ASM International,1994:144-474.
[20] YANG S Y,SU Y,WANG C P,et al.Microstructure and properties of Cu-Al-Fe high-temperature shape memory alloys[J].Materials Science and Engineering:B,2014,185:67-73.
[21] GUILEMANY J M,PEREGRIN F,LOVEY F C,et al.TEM study of β and martensite in Cu-Al-Mn shape memory alloys[J].Materials Characterization,1991,26(1):23-28.
[22] MURRAY J L.Phase diagrams of binary titanium alloys[M].Geauga:ASM International,1987:12-95.
[23] KAINUMA R,TAKAHASHI S,ISHIDA K.Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys[J].Metallurgical and Materials Transactions A,1996,27(8):2187-2195.
[24] MATSUSHITA K,OKAMOTO T,OKAMOTO T.Effects of manganese and ageing on martensitic transformation of Cu-Al-Mn alloys[J].Journal of Materials Science,1985,20(2):689-699.
[25] SAUD S N,HAMZAH E,ABUBAKAR T,et al.Effects of quenching media on phase transformation characteristics and hardness of Cu-Al-Ni-Co shape memory alloys[J].Journal of Materials Engineering and Performance,2015,24(4):1522-1530.
[26] 张一,HORNBOGEN E.Cu-Zn-Al形状记忆合金在马氏体状态的塑性变形[J].金属学报,1989,25(3):A179-A184.
[27] OLIVEIRA J P,FERNANDES F M B,SCHELL N,et al.Martensite stabilization during superelastic cycling of laser welded NiTi plates[J].Materials Letters,2016,171:273-276.
[28] SOTYS J.X-ray diffraction research of the order-disorder transitions in the ternary heusler alloys B2MnAl(B=Cu,Ni,Co,Pd,Pt)[J].Physica Status Solidi(a),1981,66(2):485-491.[1] OTSUKA K,WAYMAN C M.Shape memory materials[M].New York:Cambridge University Press,1998:27-44.
[2] JANI J M,LEARY M,SUBIC A,et al.A review of shape memory alloy research,applications and opportunities[J].Materials & Design,2014,56:1078-1113.
[3] OTSUKA K,REN X.Recent developments in the research of shape memory alloys[J].Intermetallics,1999,7(5):511-528.
[4] VAN HUMBEECK J.Non-medical applications of shape memory alloys[J].Materials Science and Engineering A,1999,273:134-148.
[5] 黄海友,王伟丽,刘记立,等.Cu基形状记忆合金的应用进展[J].中国材料进展,2016,35(12):919-926.
[6] PERKINS J,MUESING W E.Martensitic transformation cycling effects in Cu-Zn-Al shape memory alloys[J].Metallurgical Transactions A,1983,14(1):33-36.
[7] OTSUKA K,WAYMAN C M,NAKAI K,et al.Superela-sticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys[J].Acta Metallurgica,1976,24(3):207-226.
[8] SUTOU Y,OMORI T,KAINUMA R,et al.Ductile Cu-Al-Mn based shape memory alloys:general properties and applications[J].Materials Science and Technology,2008,24(8):896-901.
[9] SUN L,HUANG W M,DING Z,et al.Stimulus-responsive shape memory materials:a review[J].Materials & Design,2012,33:577-640.
[10] SUTOU Y,OMORI T,WANG J J,et al.Characteristics of Cu-Al-Mn-based shape memory alloys and their applications[J].Materials Science and Engineering A,2004,378(1/2):278-282.
[11] MATLAKHOVA L A,PEREIRA E C,MATLAKHOV A N,et al.Mechanical behavior and fracture characteri-zation of a monocrystalline Cu-Al-Ni subjected to thermal cycling treatments under load[J].Materials Charac-terization,2008,59(11):1630-1637.
[12] SUTOU Y,KAINUMA R,ISHIDA K.Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys[J].Materials Science and Engineering A,1999,273:375-379.
[13] HURTADO I,RATCHEV P,VAN HUMBEECK J,et al.A fundamental study of the χ-phase precipitation in Cu-Al-Ni-Ti-(Mn)shape memory alloys[J].Acta Materialia,1996,44(8):3299-3306.
[14] CANBAY C A,GENC Z K,SEKERCI M.Thermal and structural characterization of Cu-Al-Mn-X(Ti,Ni)shape memory alloys[J].Applied Physics A,2014,115(2):371-377.
[15] SUTOU Y,KOEDA N,OMORI T,et al.Effects of aging on stress-induced martensitic transformation in ductile Cu-Al-Mn-based shape memory alloys[J].Acta Materia-lia,2009,57(19):5759-5770.
[16] YANG S Y,OMORI T,WANG C P,et al.A jumping shape memory alloy under heat[J].Scientific Reports,2016,6:21754.
[17] YANG S Y,ZHANG F,WU J L,et al.Microstructure characterization,stress-strain behavior,superelasticity and shape memory effect of Cu-Al-Mn-Cr shape memory alloys[J].Journal of Materials Science,2017,52(10):5917-5927.
[18] YANG S Y,ZHANG F,WU J L,et al.Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys[J].Materials & Design,2017,115:17-25.
[19] SUBRAMANIAN P R,CHAKRABARTI D J,LAU-GHLIN D E.Phase diagrams of binary copper alloys[M].Geauga:ASM International,1994:144-474.
[20] YANG S Y,SU Y,WANG C P,et al.Microstructure and properties of Cu-Al-Fe high-temperature shape memory alloys[J].Materials Science and Engineering:B,2014,185:67-73.
[21] GUILEMANY J M,PEREGRIN F,LOVEY F C,et al.TEM study of β and martensite in Cu-Al-Mn shape memory alloys[J].Materials Characterization,1991,26(1):23-28.
[22] MURRAY J L.Phase diagrams of binary titanium alloys[M].Geauga:ASM International,1987:12-95.
[23] KAINUMA R,TAKAHASHI S,ISHIDA K.Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys[J].Metallurgical and Materials Transactions A,1996,27(8):2187-2195.
[24] MATSUSHITA K,OKAMOTO T,OKAMOTO T.Effects of manganese and ageing on martensitic transformation of Cu-Al-Mn alloys[J].Journal of Materials Science,1985,20(2):689-699.
[25] SAUD S N,HAMZAH E,ABUBAKAR T,et al.Effects of quenching media on phase transformation characteristics and hardness of Cu-Al-Ni-Co shape memory alloys[J].Journal of Materials Engineering and Performance,2015,24(4):1522-1530.
[26] 张一,HORNBOGEN E.Cu-Zn-Al形状记忆合金在马氏体状态的塑性变形[J].金属学报,1989,25(3):A179-A184.
[27] OLIVEIRA J P,FERNANDES F M B,SCHELL N,et al.Martensite stabilization during superelastic cycling of laser welded NiTi plates[J].Materials Letters,2016,171:273-276.
[28] SOTYS J.X-ray diffraction research of the order-disorder transitions in the ternary heusler alloys B2MnAl(B=Cu,Ni,Co,Pd,Pt)[J].Physica Status Solidi(a),1981,66(2):485-491.

备注/Memo

备注/Memo:
收稿日期:2018-03-06 录用日期:2018-05-04
基金项目:国家自然科学基金(51471138,51571168); 中央高校基本科研业务费专项(20720160078)
*通信作者:yangshuiyuan@xmu.edu.cn
更新日期/Last Update: 1900-01-01