|本期目录/Table of Contents|

[1]魏政德,赵 仪*.理论计算研究半导体晶体表面能与能带各向异性对光生电荷分离的影响[J].厦门大学学报(自然科学版),2019,58(01):11-18.[doi:10.6043/j.issn.0438-0479.201803044]
 WEI Zhengde,ZHAO Yi*.A theoretical investigation on the effects of surface energy and band energy anisotropy of semiconductor crystals on photogenerated charge separation[J].Journal of Xiamen University(Natural Science),2019,58(01):11-18.[doi:10.6043/j.issn.0438-0479.201803044]
点击复制

理论计算研究半导体晶体表面能与能带各向异性对光生电荷分离的影响(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年01期
页码:
11-18
栏目:
研究论文
出版日期:
2019-01-24

文章信息/Info

Title:
A theoretical investigation on the effects of surface energy and band energy anisotropy of semiconductor crystals on photogenerated charge separation
文章编号:
0438-0479(2019)01-0011-08
作者:
魏政德赵 仪*
厦门大学化学化工学院,福建 厦门 361005
Author(s):
WEI ZhengdeZHAO Yi*
College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
关键词:
电荷分离 表面能 能带各向异性
Keywords:
charge separation surface energy band energy anisotropy
分类号:
O 649
DOI:
10.6043/j.issn.0438-0479.201803044
文献标志码:
A
摘要:
利用半导体晶面工程促进电荷分离是提高光催化反应效率的重要措施之一,但如何理解和解释其分离机制还存在诸多争议.针对3个典型的半导体体系TiO2(锐钛矿)、Cu2WS4和SrTiO3,利用密度泛函理论计算,从表面能和体相能带的各向异性这两个角度来探讨它们对光生电子-空穴对分离的影响.结果表明,晶面表面能的差异是发生电荷分离的必要条件,而利用体相能带的各向异性能够解释实验中观测到的电荷分离方向.
Abstract:
Using crystal facet engineering of semiconductors to generate the photogenerated charge separation is an important measure to improve the efficiency of photocatalytic reaction.However,there are still many controversies over how to understand and explain the separation mechanism.In this paper,three typical semiconductor systems,TiO2(anatase),Cu2WS4 and SrTiO3,are studied using density functional theory,and the effects of surface energy and band energy anisotropy on photogenerated electron-hole pair separation are explored.The results indicate that the difference in surface energy is the necessary condition for charge separation.Moreover,band energy anisotropy along different facet directions is an important intrinsic factor for charge separation.

参考文献/References:

[1] FUJISHIMA A,HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
[2] KUDO A,MISEKI Y.Heterogeneous photocatalyst materials for water splitting[J].Chem Soc Rev,2009,38(1):253-278.
[3] REECE S Y,HAMEL J A,SUNG K,et al.Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts[J].Science,2011,334(6056):645-648.
[4] ABDI F F,HAN L,SMETS A H,et al.Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode[J].Nat Commun,2013,4:2195.
[5] LI J,CAI L,SHANG J,et al.Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis[J].Adv Mater,2016,28(21):4059-4064.
[6] GONG H,MA R,MAO F,et al.Light-induced spatial separation of charges toward different crystal facets of square-like WO3[J].Chem Commun,2016,52(80):11979-11982.
[7] JIANG J,ZHAO K,XIAO X,et al.Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J].J Am Chem Soc,2012,134(10):4473-4476.
[8] LI N,LIU M,ZHOU Z,et al.Charge separation in facet-engineered chalcogenide photocatalyst:a selective photocorrosion approach[J].Nanoscale,2014,6(16):9695-9702.
[9] LI R,TAO X,CHEN R,et al.Synergetic effect of dual co-catalysts on the activity of p-type Cu2O crystals with anisotropic facets[J].Chemistry,2015,21(41):14337-14341.
[10] LI R,ZHANG F,WANG D,et al.Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J].Nat Commun,2013,4:1432.
[11] MU L,ZHAO Y,LI A,et al.Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting[J].Energ Environ Sci,2016,9(7):2463-2469.
[12] OHNO T,SARUKAWA K,MATSUMURA M.Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions[J].New J Chem,2002,26(9):1167-1170.
[13] BAI S,JIANG J,ZHANG Q,et al.Steering charge kinetics in photocatalysis:intersection of materials syntheses,characterization techniques and theoretical simulations[J].Chem Soc Rev,2015,44(10):2893-2939.
[14] BATZILL M.Fundamental aspects of surface engineering of transition metal oxide photocatalysts[J].Energ Environ Sci,2011,4(9):3275-3286.
[15] CHEN R,ZHU J,AN H,et al.Unravelling charge sepa-ration via surface built-in electric fields within single particulate photocatalysts[J].Faraday Discuss,2017,198:473-479.
[16] HU W,LI Z,YANG J,et al.Nondecaying long range effect of surface decoration on the charge state of NV center in diamond[J].J Chem Phys,2013,138(3):034702.
[17] KIM D,YEO B C,SHIN D,et al.Dissimilar anisotropy of electron versus hole bulk transport in anatase TiO2:implications for photocatalysis[J].Phys Rev B,2017,95(4):045209.
[18] LIU T,ZHOU X,DUPUIS M,et al.The nature of photo-generated charge separation among different crystal facets of BiVO4 studied by density functional theory[J].Phys Chem Chem Phys,2015,17(36):23503-23510.
[19] MA S C,SONG W Y,LIU B,et al.Facet-dependent photocatalytic performance of TiO2:a DFT study[J].Appl Catal B:Environ,2016,198:1-8.
[20] SONG W Y,MA S C,WANG L,et al.Theoretical expla-nation of the photogenerated carrier separation at the surface junction[J].ChemCatChem,2017,9(23):4340-4344.
[21] WANG D,KANHERE P,LI M,et al.Improving photo-catalytic H2 evolution of TiO2 via formation of {001}-{010} quasi-heterojunctions[J].J Phys Chem C,2013,117(44):22894-22902.
[22] YU J,LOW J,XIAO W,et al.Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets[J].J Am Chem Soc,2014,136(25):8839-8842.
[23] ZHANG H,LIU L,ZHOU Z.First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides(BiOXs)[J].RSC Adv,2012,2(24):9224-9229.
[24] ZHANG Z,YATES J T,JR.Band bending in semicon-ductors:chemical and physical consequences at surfaces and interfaces[J].Chem Rev,2012,112(10):5520-5551.
[25] ZHEN C,YU J C,LIU G,et al.Selective deposition of redox co-catalyst(s)to improve the photocatalytic activity of single-domain ferroelectric PbTiO3 nanoplates[J].Chem Commun,2014,50(72):10416-10419.
[26] LI Y F,LIU Z P.Particle size,shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings[J].J Am Chem Soc,2011,133(39):15743-15752.
[27] ZHANG J,HUGHES T F,STEIGERWALD M,et al.Realistic cluster modeling of electron transport and trapping in solvated TiO2 nanoparticles[J].J Am Chem Soc,2012,134(29):12028-12042.
[28] LIU G,YANG H G,PAN J,et al.Titanium dioxide crystals with tailored facets[J].Chem Rev,2014,114(19):9559-9612.
[29] MAISANO M,DOZZI M V,SELLI E.Searching for facet-dependent photoactivity of shape-controlled anatase TiO2[J].J Photoch Photobio C:Photoch Rev,2016,28:29-43.
[30] PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77(18):3865-3868.
[31] BL?CHL P E.Projector augmented-wave method[J].Phys Rev B,1994,50(24):17953-17979.
[32] KRESSE G,FURTHMüLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys Rev B,1996,54(16):11169-11186.
[33] TILOCCA A,SELLONI A.DFT-GGA and DFT+U simulations of thin water layers on reduced TiO2 anatase[J].J Phy Chem C,2012,116(16):9114-9121.
[34] HORN M,SCHWERDTFEGER C F,MEAGHER E P.Refinement of the structure of anatase at several temperatures[J].Zeitschrift Für Kristallographie,1972,136(3):273-281.
[35] BARMPARIS G D,LODZIANA Z,LOPEZ N,et al.Nanoparticle shapes by using Wulff constructions and first-principles calculations[J].Beilstein J Nanotech,2015,6:361-368.
[36] JING D,LIU M,CHEN Q,et al.Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process[J].Int J Hydrogen Energ,2010,35(16):8521-8527.
[37] BUCKO T,HAFNER J,LEBèGUE S,et al.Improved description of the structure of molecular and layered crystals:ab initio DFT calculations with van der Waals corrections[J].J Phys Chem A,2010,114(43):11814-11824.
[38] CROSSLAND C J,EVANS J S.Synthesis and characterisation of a new high pressure polymorph of Cu2WS4[J].Chem Commun,2003(18):2292-2293.
[39] KATO H,KOBAYASHI M,HARA M,et al.Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting[J].Catal Sci Technol,2013,3(7):1733-1738.
[40] LI J,BAI H,YI W,et al.Synthesis and facet-dependent photocatalytic activity of strontium titanate polyhedron nanocrystals[J].Nano Res,2016,9(5):1523-1531.
[41] YAMANAKA T,HIRAI N,KOMATSU Y.Structure change of Ca1-xSrxTiO3 perovskite with composition and pressure[J].Am Mineral,2002,87(8/9):1183-1189.
[42] DONG L,SHI H,CHENG K,et al.Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals[J].Nano Res,2014,7(9):1311-1318.
[43] GORDON T R,CARGNELLO M,PAIK T,et al.Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology,oxygen vacancy concentration,and photocatalytic activity[J].J Am Chem Soc,2012,134(15):6751-6761.
[44] PAN J,LIU G,LU G Q,et al.On the true photoreactivity order of {001},{010},and {101} facets of anatase TiO2 crystals[J].Angewandte Chemie International Edition,2011,50(9):2133-2137.[1] FUJISHIMA A,HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
[2] KUDO A,MISEKI Y.Heterogeneous photocatalyst materials for water splitting[J].Chem Soc Rev,2009,38(1):253-278.
[3] REECE S Y,HAMEL J A,SUNG K,et al.Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts[J].Science,2011,334(6056):645-648.
[4] ABDI F F,HAN L,SMETS A H,et al.Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode[J].Nat Commun,2013,4:2195.
[5] LI J,CAI L,SHANG J,et al.Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis[J].Adv Mater,2016,28(21):4059-4064.
[6] GONG H,MA R,MAO F,et al.Light-induced spatial separation of charges toward different crystal facets of square-like WO3[J].Chem Commun,2016,52(80):11979-11982.
[7] JIANG J,ZHAO K,XIAO X,et al.Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J].J Am Chem Soc,2012,134(10):4473-4476.
[8] LI N,LIU M,ZHOU Z,et al.Charge separation in facet-engineered chalcogenide photocatalyst:a selective photocorrosion approach[J].Nanoscale,2014,6(16):9695-9702.
[9] LI R,TAO X,CHEN R,et al.Synergetic effect of dual co-catalysts on the activity of p-type Cu2O crystals with anisotropic facets[J].Chemistry,2015,21(41):14337-14341.
[10] LI R,ZHANG F,WANG D,et al.Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J].Nat Commun,2013,4:1432.
[11] MU L,ZHAO Y,LI A,et al.Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting[J].Energ Environ Sci,2016,9(7):2463-2469.
[12] OHNO T,SARUKAWA K,MATSUMURA M.Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions[J].New J Chem,2002,26(9):1167-1170.
[13] BAI S,JIANG J,ZHANG Q,et al.Steering charge kinetics in photocatalysis:intersection of materials syntheses,characterization techniques and theoretical simulations[J].Chem Soc Rev,2015,44(10):2893-2939.
[14] BATZILL M.Fundamental aspects of surface engineering of transition metal oxide photocatalysts[J].Energ Environ Sci,2011,4(9):3275-3286.
[15] CHEN R,ZHU J,AN H,et al.Unravelling charge sepa-ration via surface built-in electric fields within single particulate photocatalysts[J].Faraday Discuss,2017,198:473-479.
[16] HU W,LI Z,YANG J,et al.Nondecaying long range effect of surface decoration on the charge state of NV center in diamond[J].J Chem Phys,2013,138(3):034702.
[17] KIM D,YEO B C,SHIN D,et al.Dissimilar anisotropy of electron versus hole bulk transport in anatase TiO2:implications for photocatalysis[J].Phys Rev B,2017,95(4):045209.
[18] LIU T,ZHOU X,DUPUIS M,et al.The nature of photo-generated charge separation among different crystal facets of BiVO4 studied by density functional theory[J].Phys Chem Chem Phys,2015,17(36):23503-23510.
[19] MA S C,SONG W Y,LIU B,et al.Facet-dependent photocatalytic performance of TiO2:a DFT study[J].Appl Catal B:Environ,2016,198:1-8.
[20] SONG W Y,MA S C,WANG L,et al.Theoretical expla-nation of the photogenerated carrier separation at the surface junction[J].ChemCatChem,2017,9(23):4340-4344.
[21] WANG D,KANHERE P,LI M,et al.Improving photo-catalytic H2 evolution of TiO2 via formation of {001}-{010} quasi-heterojunctions[J].J Phys Chem C,2013,117(44):22894-22902.
[22] YU J,LOW J,XIAO W,et al.Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets[J].J Am Chem Soc,2014,136(25):8839-8842.
[23] ZHANG H,LIU L,ZHOU Z.First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides(BiOXs)[J].RSC Adv,2012,2(24):9224-9229.
[24] ZHANG Z,YATES J T,JR.Band bending in semicon-ductors:chemical and physical consequences at surfaces and interfaces[J].Chem Rev,2012,112(10):5520-5551.
[25] ZHEN C,YU J C,LIU G,et al.Selective deposition of redox co-catalyst(s)to improve the photocatalytic activity of single-domain ferroelectric PbTiO3 nanoplates[J].Chem Commun,2014,50(72):10416-10419.
[26] LI Y F,LIU Z P.Particle size,shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings[J].J Am Chem Soc,2011,133(39):15743-15752.
[27] ZHANG J,HUGHES T F,STEIGERWALD M,et al.Realistic cluster modeling of electron transport and trapping in solvated TiO2 nanoparticles[J].J Am Chem Soc,2012,134(29):12028-12042.
[28] LIU G,YANG H G,PAN J,et al.Titanium dioxide crystals with tailored facets[J].Chem Rev,2014,114(19):9559-9612.
[29] MAISANO M,DOZZI M V,SELLI E.Searching for facet-dependent photoactivity of shape-controlled anatase TiO2[J].J Photoch Photobio C:Photoch Rev,2016,28:29-43.
[30] PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77(18):3865-3868.
[31] BL?CHL P E.Projector augmented-wave method[J].Phys Rev B,1994,50(24):17953-17979.
[32] KRESSE G,FURTHMüLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys Rev B,1996,54(16):11169-11186.
[33] TILOCCA A,SELLONI A.DFT-GGA and DFT+U simulations of thin water layers on reduced TiO2 anatase[J].J Phy Chem C,2012,116(16):9114-9121.
[34] HORN M,SCHWERDTFEGER C F,MEAGHER E P.Refinement of the structure of anatase at several temperatures[J].Zeitschrift Für Kristallographie,1972,136(3):273-281.
[35] BARMPARIS G D,LODZIANA Z,LOPEZ N,et al.Nanoparticle shapes by using Wulff constructions and first-principles calculations[J].Beilstein J Nanotech,2015,6:361-368.
[36] JING D,LIU M,CHEN Q,et al.Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process[J].Int J Hydrogen Energ,2010,35(16):8521-8527.
[37] BUCKO T,HAFNER J,LEBèGUE S,et al.Improved description of the structure of molecular and layered crystals:ab initio DFT calculations with van der Waals corrections[J].J Phys Chem A,2010,114(43):11814-11824.
[38] CROSSLAND C J,EVANS J S.Synthesis and characterisation of a new high pressure polymorph of Cu2WS4[J].Chem Commun,2003(18):2292-2293.
[39] KATO H,KOBAYASHI M,HARA M,et al.Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting[J].Catal Sci Technol,2013,3(7):1733-1738.
[40] LI J,BAI H,YI W,et al.Synthesis and facet-dependent photocatalytic activity of strontium titanate polyhedron nanocrystals[J].Nano Res,2016,9(5):1523-1531.
[41] YAMANAKA T,HIRAI N,KOMATSU Y.Structure change of Ca1-xSrxTiO3 perovskite with composition and pressure[J].Am Mineral,2002,87(8/9):1183-1189.
[42] DONG L,SHI H,CHENG K,et al.Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals[J].Nano Res,2014,7(9):1311-1318.
[43] GORDON T R,CARGNELLO M,PAIK T,et al.Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology,oxygen vacancy concentration,and photocatalytic activity[J].J Am Chem Soc,2012,134(15):6751-6761.
[44] PAN J,LIU G,LU G Q,et al.On the true photoreactivity order of {001},{010},and {101} facets of anatase TiO2 crystals[J].Angewandte Chemie International Edition,2011,50(9):2133-2137.

备注/Memo

备注/Memo:
收稿日期:2018-03-20 录用日期:2018-05-02
基金项目:国家自然科学基金(21573175,21773191)
*通信作者:yizhao@xmu.edu.cn
更新日期/Last Update: 1900-01-01