|本期目录/Table of Contents|

[1]邱国强,王海黎*,邢小罡.BGC-Argo浮标观测在海洋生物地球化学中的应用[J].厦门大学学报(自然科学版),2018,57(06):827-840.[doi:10.6043/j.issn.0438-0479.201805041]
 QIU Guoqiang,WANG Haili*,XING Xiaogang.Application of BGC-Argo Floats Observation toOcean Biogeochemistry[J].Journal of Xiamen University(Natural Science),2018,57(06):827-840.[doi:10.6043/j.issn.0438-0479.201805041]
点击复制

BGC-Argo浮标观测在海洋生物地球化学中的应用(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年06期
页码:
827-840
栏目:
海洋环境监测
出版日期:
2018-11-28

文章信息/Info

Title:
Application of BGC-Argo Floats Observation toOcean Biogeochemistry
文章编号:
0438-0479(2018)06-0827-14
作者:
邱国强1王海黎1*邢小罡2
1.近海海洋环境科学国家重点实验室(厦门大学),福建 厦门 361102; 2.国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室,浙江 杭州 310012
Author(s):
QIU Guoqiang1WANG Haili1*XING Xiaogang2
1.State Key Laboratory of Marine Environment Science(Xiamen University),Xiamen 361102,China; 2.State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration,Hangzhou 310012,China
关键词:
BGC-Argo浮标 生物地球化学 海洋光学 海洋观测
Keywords:
BGC-Argo floats biogeochemistry ocean optics ocean observation
分类号:
P 734.2
DOI:
10.6043/j.issn.0438-0479.201805041
文献标志码:
A
摘要:
长期以来观测数据的不足严重制约着海洋生物地球化学过程的研究,随着技术发展,搭载物理、生物与化学多传感器的生物地球化学剖面浮标(BGC-Argo浮标)为海洋观测带来了重大改变:通过长期自动化剖面观测,可以覆盖从昼夜、季节到年际的连续时间尺度; 通过阵列式投放可以覆盖从次中尺度、中尺度、海盆到全球的连续空间尺度; 高垂向分辨率的观测数据可以同船载观测和遥感观测相互补充.海量的观测数据有助于各种海洋生物地球化学过程的研究,并进一步认识、理解与预测海洋生物地球化学循环、生物泵过程以及海洋生态系统.主要综述了BGC-Argo的发展背景、科学目标、主要应用以及目前在南海的应用进展.
Abstract:
Ocean biogeochemical research has been limited by insufficient observation data for a long time.With the development of technology,the biogeochemical Argo(BGC-Argo)floats bring evolutionary change to ocean observation,through equipping diverse physical,biological,and chemical sensors on Argo floats.Thanks to its capability of autonomous profiling observation in the open ocean,BGC-Argo floats cover continuous temporal scales(from diurnal,seasonal,to interannual).Through an array deployment,BGC-Argo floats would cover continuous spatial scales(from sub-meso,meso,basin,to global).With high vertical resolution,BGC-Argo floats not only supplement the data gap between ship-based and satellite-based platforms,but also provide large amounts of data that have contributed to various biogeochemical research,and further understanding,comprehension and prediction of ocean biogeochemical cycles,biological pumping and ecosystems.This paper reviews the backgrounds,scientific objectives,and application studies of BGC-Argo floats,and especially its application in the South China Sea.

参考文献/References:

[1] DICKEY T D.Emerging ocean observations for interdisci-plinary data assimilation systems[J].Journal of Marine Systems,2003,40(53):5-48.
[2] 邢小罡,赵冬至,CLAUSTRE H,等.一种新的海洋生物地球化学自主观测平台:Bio-Argo浮标[J].海洋环境科学,2012(5):733-739.
[3] MCCLAIN C R.A decade of satellite ocean color observa-tions[J].Annual Review of Marine Science,2009,1:19-42.
[4] WANG M,AHN J H,JIANG L,et al.Ocean color products from the Korean geostationary ocean color imager(GOCI)[J].Optics Express,2013,21(3):3835-3849.
[5] LUCKE R L,CORSON M,MCGLOTHLIN N R,et al.Hyperspectral imager for the coastal ocean:instrument description and first images[J].Applied Optics,2011,50(11):1501-1516.
[6] ROEMMICH D,RISER S,DAVIS R,et al.Autonomous profiling floats:workhorse for broad-scale ocean observations[J].Mar Technol Soc J,2004,38(2):21-29.
[7] 许建平,朱伯康.ARGO全球海洋观测网与我国海洋监测技术的发展[J].海洋技术,2001,20(2):15-17.
[8] JOHNSON K S,BERELSON W M,BOSS E,et al.Observing biogeochemical cycles at global scales with profiling floats and gliders:prospects for a global array[J].Oceanography,2009,22(3):216-225.
[9] BISHOP J K B,DAVIS R E,SHERMAN J T.Robotic observations of dust storm enhancement of carbon biomass in the North Pacific[J].Science,2002,298(5594):817-821.
[10] MIGNOT A,CLAUSTRE H,UITZ J,et al.Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments:a Bio-Argo float investigation[J].Glob Biogeochem Cycle,2014,28(8):856-876.
[11] XING X,CLAUSTRE H,UITZ J,et al.Seasonal variations of bio-optical properties and their interrelationships observed by Bio-Argo floats in the subpolar North Atlantic[J].Journal of Geophysical Research:Oceans,2014,119(10):7372-7388.
[12] STRAMSKI D,REYNOLDS R A,BABIN M,et al.Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans[J].Biogeosciences,2008,5(1):171-201.
[13] BEHRENFELD M J,BOSS E,SIEGEL D A,et al.Carbon-based ocean productivity and phytoplankton physiology from space[J].Glob Biogeochem Cycle,2005,19(1):GB1006.
[14] GRAFF J R,WESTBERRY T K,MILLIGAN A J,et al.Analytical phytoplankton carbon measurements spanning diverse ecosystems[J].Deep-Sea Research Part Ⅰ,2015,102:16-25.
[15] MARTINEZ-VICENTE V,DALL’OLMO G,TARRAN G,et al.Optical backscattering is correlated with phyto-plankton carbon across the Atlantic Ocean[J].Geophysical Research Letters,2013,40(6):1154-1158.
[16] BEHRENFELD M J,BOSS E.The beam attenuation to chlorophyll ratio:an optical index of phytoplankton physiology in the surface ocean?[J].Deep-Sea Research Part Ⅰ,2003,50(12):1537-1549.
[17] MOREL A,AHN Y H.Optics of heterotrophic nanoflage-llates and ciliates:a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells[J].Journal of Marine Research,1991,49(1):177-202.
[18] STRAMSKI D,KIEFER D A.Light scattering by microorganisms in the open ocean[J].Progress in Oceanography,1991,28(4):343-383.
[19] TWARDOWSKI M S,BOSS E,MACDONALD J B,et al.A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in caseⅠand caseⅡwaters[J].Journal of Geophysical Research:Oceans,2001,106(C7):14129-14142.
[20] K?RTZINGER A,SCHIMANSKI J,SEND U,et al.The ocean takes a deep breath[J].Science,2004,306(5700):1337.
[21] CZESCHEL R,STRAMMA L,WELLER R A,et al.Circulation,eddies,oxygen,and nutrient changes in the eastern tropical South Pacific Ocean[J].Ocean Science,2015,11(3):455-470.
[22] MARTZ T R,JOHNSON K S,RISER S C.Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific[J].Limnology and Oceano-graphy,2008,53:2094-2111.
[23] KIHM C,K?RTZINGER A.Air-sea gas transfer velocity for oxygen derived from float data[J].Journal of Geophysical Research:Oceans,2010,115:C12003.
[24] ULLOA O,CANFIELD D E,DELONG E F,et al.Microbial oceanography of anoxic oxygen minimum zones[J].Proc Natl Acad Sci U S A,2012,109(40):15996-16003.
[25] BOSS E,BEHRENFELD M.In situ evaluation of the initiation of the North Atlantic phytoplankton bloom[J].Geophysical Research Letters,2010,37:L18603.
[26] YANG B,EMERSON S R,BUSHINSKY S M.Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats[J].Glob Biogeochem Cycle,2017,31(4):728-744.
[27] BEHRENFELD M J,FALKOWSKI P G.A consumer’s guide to phytoplankton primary productivity models[J].Limnology and Oceanography,1997,42(7):1479-1491.
[28] MACCREADY P,QUAY P.Biological export flux in the Southern Ocean estimated from a climatological nitrate budget[J].Deep-Sea Research Part Ⅱ,2001,48(19/20):4299-4322.
[29] BISHOP J K B,WOOD T J,DAVIS R E,et al.Robotic observations of enhanced carbon biomass and export at 55°S during SOFeX[J].Science,2004,304(5669):417-420.
[30] BRIGGS N,PERRY M J,CETINIC I,et al.High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom[J].Deep-Sea Research Part Ⅰ,2011,58(10):1031-1039.
[31] BISHOP J K B.Autonomous observations of the ocean biological carbon pump[J].Oceanography,2009,22(2):182-193.
[32] WILLIAMS N L,JURANEK L W,FEELY R A,et al.Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH:an uncertainty analysis[J].Glob Biogeochem Cycle,2017,31(3):591-604.
[33] WILLIAMS N L,JURANEK L W,JOHNSON K S,et al.Empirical algorithms to estimate water column pH in the Southern Ocean[J].Geophysical Research Letters,2016,43(7):3415-3422.
[34] FALKOWSKI P G,LAROCHE J.Acclimation to spectral irradiance in algae[J].Journal of Phycology,1991,27(1):8-14.
[35] HALSEY K H,MILLIGAN A J,BEHRENFELD M J.Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production[J].Photosynthesis Research,2010,103(2):125-137.
[36] SIEGEL D A,BEHRENFELD M J,MARITORENA S,et al.Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission[J].Remote Sens Environ,2013,135:77-91.
[37] BARBIEUX M,UITZ J,BRICAUD A,et al.Assessing the variability in the relationship between the particulate backscattering coefficient and the chlorophyll a concentration from a global biogeochemical-Argo database[J].Journal of Geophysical Research:Oceans,2018,123(2):1229-1250.
[38] UITZ J,CLAUSTRE H,MOREL A,et al.Vertical distribution of phytoplankton communities in open ocean:an assessment based on surface chlorophyll[J].Journal of Geophysical Research:Oceans,2006,111:C08005.
[39] CULLEN J J.Subsurface chlorophyll maximum layers:enduring enigma or mystery solved?[J].Annual Review of Marine Science,2015,7(1):207-239.
[40] SVERDRUP H U.On Conditions for the vernal blooming of phytoplankton[J].Journal du Conseil,1953,18(3):287-295.
[41] NING X,CHAI F,XUE H,et al.Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J].Journal of Geophysical Research:Oceans,2004,109:C10005.
[42] TAYLOR J R,FERRARI R.Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms[J].Limnology and Oceano-graphy,2011,56(6):2293-2307.
[43] BEHRENFELD M J.Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms[J].Ecology,2010,91(4):977-989.
[44] MAHADEVAN A,D’ASARO E,LEE C,et al.Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms[J].Science,2012,337(6090):54-58.
[45] BEHRENFELD M J,DONEY S C,LIMA I,et al.Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom[J].Glob Biogeochem Cycle,2013,27(2):526-540.
[46] LONGHURST A R,GLEN HARRISON W.The biolo-gical pump:profiles of plankton production and consumption in the upper ocean[J].Progress in Oceano-graphy,1989,22(1):47-123.
[47] BUSHINSKY S M,EMERSON S R,RISER S C,et al.Accurate oxygen measurements on modified Argo floats using in situ air calibrations[J].Limnology and Oceano-graphy:Methods,2016,14(8):491-505.
[48] EMERSON S.Annual net community production and the biological carbon flux in the ocean[J].Glob Biogeochem Cycle,2014,28(1):14-28.
[49] KEELING R F,KORTZINGER A,GRUBER N.Ocean deoxygenation in a warming world[J].Annual Review of Marine Science,2010,2:199-229.
[50] STRAMMA L,JOHNSON G C,SPRINTALL J,et al.Expanding oxygen-minimum zones in the tropical oceans[J].Science,2008,320(5876):655-658.
[51] OSCHLIES A,SCHULZ K G,RIEBESELL U,et al.Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export[J].Glob Biogeochem Cycle,2008,22(4):GB4008.
[52] ALTABET M A,HIGGINSON M J,MURRAY D W.The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2[J].Nature,2002,415(6868):159-162.
[53] SUGA T,AOKI Y,SAITO H,et al.Ventilation of the North Pacific subtropical pycnocline and mode water formation[J].Progress in Oceanography,2008,77(4):285-297.
[54] SABINE C L,FEELY R A,GRUBER N,et al.The oceanic sink for anthropogenic CO2[J].Science,2004,305(5682):367-371.
[55] MEISSNER K J,GALBRAITH E D,VOLKER C.Denitrification under glacial and interglacial conditions:a physical approach[J].Paleoceanography,2005,20(3):PA3001.
[56] SARMIENTO J L,GRUBER N,BRZEZINSKI M A,et al.High-latitude controls of thermocline nutrients and low latitude biological productivity[J].Nature,2004,427(6969):56-60.
[57] NELSON N B,SIEGEL D A,CARLSON C A,et al.Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter[J].Geophysical Research Letters,2010,37(3):L03610.
[58] LOZIER M S,ROUSSENOV V,REED M S C,et al.Opposing decadal changes for the North Atlantic meridional overturning circulation[J].Nature Geo-science,2010,3(10):728-734.
[59] PAULY D,CHRISTENSEN V.Primary production required to sustain global fisheries[J].Nature,1995,374(6519):255-257.
[60] MCGILLICUDDY D J,ROBINSON A R.Eddy-induced nutrient supply and new production in the Sargasso Sea[J].Deep-Sea Research Part Ⅰ,1997,44(8):1427-1450.
[61] MARTIN J H,GORDON R M.Northeast Pacific iron distributions in relation to phytoplankton productivity[J].Deep-Sea Research Part A,1988,35(2):177-196.
[62] LIN I I,HU C,LI Y H,et al.Fertilization potential of volcanic dust in the low-nutrient low-chlorophyll western North Pacific subtropical gyre:satellite evidence and laboratory study[J].Glob Biogeochem Cycle,2011,25(1):GB1006.
[63] LANGMANN B,ZAKSEK K,HORT M,et al.Volcanic ash as fertiliser for the surface ocean[J].Atmospheric Chemistry and Physics,2010,10(8):3891-3899.
[64] DUARTE C M,DACHS J,LLABRES M,et al.Aerosol inputs enhance new production in the subtropical northeast Atlantic[J].Journal of Geophysical Research-Biogeosciences,2006,111:G04006.
[65] TIMMERMANS K R,STOLTE W,DEBAAR H J W.Iron-mediated effects on nitrate reductase in marine phytoplankton[J].Marine Biology,1994,121(2):389-396.
[66] BOPP L,LEVY M,RESPLANDY L,et al.Pathways of anthropogenic carbon subduction in the global ocean[J].Geophysical Research Letters,2015,42(15):6416-6423.
[67] PRICE J F.Upper ocean response to a hurricane[J].Journal of Physical Oceanography,1981,11(2):153-175.
[68] SISWANTO E,MORIMOTO A,KOJIMA S.Enhancement of phytoplankton primary productivity in the southern East China Sea following episodic typhoon passage[J].Geophysical Research Letters,2009,36(11):L11603.
[69] LIN I,LIU W T,WU C C,et al.New evidence for enhanced ocean primary production triggered by tropical cyclone[J].Geophysical Research Letters,2003,30(13):1718.
[70] HU C,MULLER-KARGER F E.Response of sea surface properties to Hurricane Dennis in the eastern Gulf of Mexico[J].Geophysical Research Letters,2007,34(7):L07606.
[71] LIN I I.Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean[J].Journal of Geophysical Research:Oceans,2012,117:C03039.
[72] SUN Q Y,TANG D L,LEGENDRE L,et al.Enhanced sea-air CO2 exchange influenced by a tropical depression in the South China Sea[J].Journal of Geophysical Research:Oceans,2014,119(10):6792-6804.
[73] LIN J,TANG D,ALPERS W,et al.Response of dissolved oxygen and related marine ecological parameters to a tropical cyclone in the South China Sea[J].Advances in Space Research,2014,53(7):1081-1091.
[74] YU J,TANG D L,CHEN G B,et al.The positive effects of typhoons on the fish CPUE in the South China Sea[J].Continental Shelf Research,2014,84:1-12.
[75] LIN I I,WU C C,PUN I F,et al.Upper-ocean thermal structure and the western north pacific category 5 typhoons.Part I:ocean features and the category 5 typhoons’ intensification[J].Monthly Weather Review,2008,136(9):3288-3306.
[76] PARK J J,KWON Y O,PRICE J F.Argo array observation of ocean heat content changes induced by tropical cyclones in the North Pacific[J].Journal of Geophysical Research:Oceans,2011,116:C12025.
[77] CHACKO N.Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal:Bio-Argo subsurface observations[J].Deep-Sea Research Part Ⅰ,2017,124:66-72.
[78] CHELTON D B,GAUBE P,SCHLAX M G,et al.The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll[J].Science,2011,334(6054):328-332.
[79] MCGILLICUDDY D J,ROBINSON A R,SIEGEL D A,et al.Influence of mesoscale eddies on new production in the Sargasso Sea[J].Nature,1998,394(6690):263-266.
[80] SIEGEL D A,PETERSON P,MCGILLICUDDY D J,et al.Bio-optical footprints created by mesoscale eddies in the Sargasso Sea[J].Geophysical Research Letters,2011,38(13):L13608.
[81] GAUBE P,CHELTON D B,STRUTTON P G,et al.Satellite observations of chlorophyll,phytoplankton biomass,and Ekman pumping in nonlinear mesoscale eddies[J].Journal of Geophysical Research:Oceans,2013,118(12):6349-6370.
[82] GAUBE P,CHELTON D B,SAMELSON R M,et al.Satellite observations of mesoscale eddy-induced Ekman pumping[J].Journal of Physical Oceanography,2015,45(1):104-132.
[83] LEVY M,FERRARI R,FRANKS P J S,et al.Bringing physics to life at the submesoscale[J].Geophysical Research Letters,2012,39:L14602.
[84] BOSS E,SWIFT D,TAYLOR L,et al.Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite[J].Limnology and Oceanography,2008,53(5):2112-2122.
[85] DUFOIS F,HARDMAN-MOUNTFORD N J,FERNA-NDES M,et al.Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies[J].Geophysical Research Letters,2017,44(7):3255-3264.
[86] CLAUSTRE H,MOREL A,BABIN M,et al.Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific:scales,patterns,and biogeochemical implications[J].Journal of Geophysical Research:Oceans,1999,104(C2):3401-3422.
[87] CLAUSTRE H,HUOT Y,OBERNOSTERER I,et al.Gross community production and metabolic balance in the South Pacific Gyre,using a non intrusive bio-optical method[J].Biogeosciences,2008,5(2):463-474.
[88] GERBI G P,BOSS E,WERDELL P J,et al.Validation of ocean color remote sensing reflectance using autonomous floats[J].Journal of Atmospheric and Oceanic Techno-logy,2016,33(11):2331-2352.
[89] WOJTASIEWICZ B,HARDMAN-MOUNTFORD N J,ANTOINE D,et al.Use of bio-optical profiling float data in validation of ocean colour satellite products in a remote ocean region[J].Remote Sens Environ,2018,209:275-290.
[90] HU C,LEE Z,FRANZ B.Chlorophyll a algorithms for oligotrophic oceans:a novel approach based on three-band reflectance difference[J].Journal of Geophysical Research:Oceans,2012,117:C01011.
[91] HA?NTJENS N,BOSS E,TALLEY L D.Revisiting ocean color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeoche-mical floats[J].Journal of Geophysical Research:Oceans,2017,122(8):6583-6593.
[92] DONEY S C,LIMA I,MOORE J K,et al.Skill metrics for confronting global upper ocean ecosystem-biogeoche-mistry models against field and remote sensing data[J].Journal of Marine Systems,2009,76(1):95-112.
[93] VERDY A,MAZLOFF M R.A data assimilating model for estimating Southern Ocean biogeochemistry[J].Journal of Geophysical Research:Oceans,2017,122(9):6968-6988.
[94] COSSARINI G,D’ORTENZIO F,MARIOTTI L,et al.Development of a multi-data assimilation scheme to integrate Bio-Argo floats data with ocean colour satellite data into the CMEMS MFC-Biogeochemistry[C]∥EGU General Assembly Conference.[S.l.]:EGU,2017.
[95] CHANG G C,DICKEY T D.Coastal ocean optical influences on solar transmission and radiant heating rate[J].Journal of Geophysical Research:Oceans,2004,109:C01020.
[96] MURTUGUDDE R,BEAUCHAMP J,MCCLAIN C R,et al.Effects of penetrative radiation on the upper tropical ocean circulation[J].Journal of Climate,2002,15(5):470-486.
[97] OHLMANN J C,SIEGEL D A.Ocean radiant heating.Part Ⅱ:parameterizing solar radiation transmission through the upper ocean[J].Journal of Physical Oceanography,2000,30(8):1849-1865.
[98] MOREL A,HUOT Y,GENTILI B,et al.Examining the consistency of products derived from various ocean color sensors in open ocean(Case 1)waters in the perspective of a multi-sensor approach[J].Remote Sens Environ,2007,111(1):69-88.
[99] GREGG W W,CASEY N W,MCCLAIN C R.Recent trends in global ocean chlorophyll[J].Geophysical Research Letters,2005,32:L03606.
[100] LENGAIGNE M,MADEC G,BOPP L,et al.Bio-physical feedbacks in the Arctic Ocean using an earth system model[J].Geophysical Research Letters,2009,36:L21602.
[101] ZHANG W Z,WANG H,CHAI F,et al.Physical drivers of chlorophyll variability in the open South China Sea[J].Journal of Geophysical Research:Oceans,121(9):7123-7140.
[102] HUANG Y,YANG B,CHEN B,et al.Net community production in the South China Sea Basin estimated from in situ O2 measurements on an Argo profiling float[J].Deep-Sea Research Part Ⅰ,2018,131:54-61.

备注/Memo

备注/Memo:
收稿日期:2018-05-31 录用日期:2018-09-02
基金项目:国家重点基础研究发展计划(973计划)(2015CB954002); 国家自然科学基金(41576100)
*通信作者:hwang@xmu.edu.cn
引文格式:邱国强,王海黎,邢小罡.BGC-Argo浮标观测在海洋生物地球化学中的应用[J].厦门大学学报(自然科学版),2018,57(6):827-840.
Citation:QIU G Q,WANG H L,XING X G.Application of BGC-Argo floats observation to ocean biogeochemistry[J].J Xiamen Univ Nat Sci,2018,57(6):827-840.(in Chinese)
更新日期/Last Update: 1900-01-01