|本期目录/Table of Contents|

[1]葛黄敏*,吴伟艳,幸继联.南海北部表层沉积物中甘油二烷基甘油四醚随水深的分布特征[J].厦门大学学报(自然科学版),2018,57(06):778-787.[doi:10.6043/j.issn.0438-0479.201805037]
 GE Huangmin*,WU Weiyan,XING Jilian.Distribution Characteristics of Glycerol Dialkyl Glycerol Tetraethers in Surface Sediments with Water Depth in the Northern South China Sea[J].Journal of Xiamen University(Natural Science),2018,57(06):778-787.[doi:10.6043/j.issn.0438-0479.201805037]
点击复制

南海北部表层沉积物中甘油二烷基甘油四醚随水深的分布特征(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年06期
页码:
778-787
栏目:
生物地球化学循环与全球变化
出版日期:
2018-11-28

文章信息/Info

Title:
Distribution Characteristics of Glycerol Dialkyl Glycerol Tetraethers in Surface Sediments with Water Depth in the Northern South China Sea
文章编号:
0438-0479(2018)06-0778-10
作者:
葛黄敏1*吴伟艳2幸继联1
1.上海海洋大学 海洋科学学院,上海深渊科学工程技术研究中心,上海 201306; 2.同济大学海洋地质国家重点实验室,上海 200092
Author(s):
GE Huangmin1*WU Weiyan2XING Jilian1
1.Shanghai Engineering Research Center of Hadal Science and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China; 2.State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China
关键词:
甘油二烷基甘油四醚 古菌 细菌 表层沉积物 水深 南海北部
Keywords:
glycerol dialkyl glycerol tetraethers(GDGTs) archaea bacteria surface sediments water depth northern South China Sea
分类号:
P 735
DOI:
10.6043/j.issn.0438-0479.201805037
文献标志码:
A
摘要:
甘油二烷基甘油四醚(glycerol dialkyl glycerol tetraethers,GDGTs)是来源于古菌和细菌的生物标志化合物,广泛应用于海洋科学研究.南海北部有机质来源复杂,解析南海表层沉积物中GDGTs的组成及来源有助于更好地应用GDGTs进行环境重建.通过高效液相色谱-质谱(HPLC-MS)检测了南海北部湾7个表层沉积物样品的脂类组成,结合已发表的南海北部55个表层沉积物的相关数据,详细分析了古菌和细菌GDGTs随水深在南海北部的分布特征,并通过多种指标探讨了GDGTs的来源.结果表明,以200 m为界,GDGTs各组分及相关指标均出现显著的分段式分布趋势.古菌GDGTs随水深的分布特征可能是浅水和深水奇古菌类群产生的GDGTs组成不同导致的; 细菌GDGTs随水深的分布特征则指示浅水区的GDGTs主要来源于陆源贡献,而深水区则同时包括陆源和水体自生两个来源.
Abstract:
Archaeal and bacterial biomarkers,glycerol dialkyl glycerol tetraethers(GDGTs),have been widely applied to paleoenvironmental research in the South China Sea(SCS).Marine sediments are a commonly-used archive to detect GDGTs.Considering complicated sources of organic matter in the SCS,it is necessary to unravel the compositions and sources of GDGTs to better use GDGTs-based proxies.This study determines the abundances of GDGTs in 7 surface sediments from Tonkin Gulf using high-performance liquid chromatography-mass spectrometry(HPLC-MS).Integrated with the published abundances of GDGTs in 55 surface sediments from the SCS,we find two significant patterns in the distributions of GDGTs at above and below 200 m water depth.Variations in isoGDGTs distribution may be attributed to the different preferences in the GDGTs composition synthesized by shallow and deep water thaumarchaeota.The different brGDGTs distributions indicated a dominant terrestrial input to brGDGTs in shallow water sediments,while in deep water sediments,in situ production of brGDGTs promotes its contribution to the brGDGTs pool as well.Our study demonstrates the significance of assessing the GDGTs sources before using them as environmental proxies.

参考文献/References:

[1] DRISCOLL N W,WEISSEL J K,GOFF J A.Potential for large-scale submarine slope failure and tsunami generation along the U.S.mid-Atlantic coast[J].Geology,2000,28(5):407-410.
[2] SCHOUTEN S,HOPMANS E C,SINNINGHE DAMSTé J S.The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:a review[J].Organic Geochemistry,2013,54:19-61.
[3] HOPMANS E C,WEIJERS J W H,SCHEFUSS E,et al.A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J].Earth and Planetary Science Letters,2004,224(1/2):107-116.
[4] SCHOUTEN S,HOPMANS E C,SCHEFU? E,et al.Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures?[J].Earth and Planetary Science Letters,2002,204(1/2):265-274.
[5] MILLIMAN J D,MEADE R H.World-wide delivery of river sediment to the oceans[J].The Journal of Geology,1983,91(1):1-21.
[6] WEI Y L,WANG J X,LIU J,et al.Spatial variations in archaeal lipids of surface water and core-top sediments in the South China Sea:implications for paleoclimate studies[J].Applied and Environmental Microbiology,2011,77(21):7479-7489.
[7] GE H M,ZHANG C L,DANG H Y,et al.Distribution of tetraether lipids in surface sediments of the northern South China Sea:implications for TEX86 proxies[J].Geosci Front,2013,4(2):223-229.
[8] LI D W,ZHAO M X,TIAN J,et al.Comparison and implication of TEX86 and UK’37 temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2013,376:213-223.
[9] ZHOU H D,HU J F,SPIRO B,et al.Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China:indicators of sea surface temperature and effects of their sources[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2014,395:114-121.
[10] DONG L,LI Q Y,LI L,et al.Glacial-interglacial contrast in MBT/CBT proxies in the South China Sea:implications for marine production of branched GDGTs and continental teleconnection[J].Organic Geochemistry,2015,79:74-82.
[11] WANG J X,WEI Y L,WANG P,et al.Unusually low TEX86 values in the transitional zone between Pearl River estuary and coastal South China Sea:impact of changing archaeal community composition[J].Chemical Geology,2015,402:18-29.
[12] WANG J X,ZHANG C L,XIE W,et al.Contribution of Marine Group Ⅱ Euryarchaeota to cyclopentyl tetraethers in the Pearl River estuary and coastal South China Sea:impact on the TEX86 paleothermometer[J].Biogeosciences Discussions,2015,12(15):12455-12484.
[13] JIA G D,ZHANG J,CHEN J F,et al.Archaeal tetraether lipids record subsurface water temperature in the South China Sea[J].Organic Geochemistry,2012,50:68-77.
[14] JIA G D,WANG X X,GUO W,et al.Seasonal distribution of archaeal lipids in surface water and its constraint on their sources and the TEX86 temperature proxy in sediments of the South China Sea[J].Journal of Geophysical Research:Biogeosciences,2017,122(3):592-606.
[15] 杨义.南海不同水深沉积物的微生物脂类分布特征及其对古环境重建的启示[D].武汉:中国地质大学,2017.
[16] YANG Y,GAO C,DANG X Y,et al.Assessing hydroxylated isoprenoid GDGTs as a paleothermometer for the tropical South China Sea[J].Organic Geochemistry,2018,115:156-165.
[17] HUGUET C,CARTES J E,SINNINGHE DAMSTé J S,et al.Marine crenarchaeotal membrane lipids in decapods:implications for the TEX86 paleothermometer[J].Geochemistry Geophysics Geosystems,2006,7(11):Q11010.
[18] SINNINGHE DAMSTé J S,OSSEBAAR J,ABBAS B,et al.Fluxes and distribution of tetraether lipids in an equatorial African lake:constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J].Geochimica et Cosmochimica Acta,2009,73(14):4232-4249.
[19] ZHANG Y G,ZHANG C L,LIU X L,et al.Methane index:a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates[J].Earth and Planetary Science Letters,2011,307(3):525-534.
[20] SCHOUTEN S,BAAS M,HOPMANS E C,et al.Tetraether membrane lipids of Candidatus "Aciduli-profundum boonei",a cultivated obligate thermoaci-dophilic euryarchaeote from deep-sea hydrothermal vents[J].Extremophiles,2008,12(1):119-124.
[21] ELLING F J,K?NNEKE M,LIPP J S,et al.Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment[J].Geochimica et Cosmochimica Acta,2014,141:579-597.
[22] ELLING F J,K?NNEKE M,MU?MANN M,et al.Influence of temperature,pH,and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates[J].Geochimica et Cosmochimica Acta,2015,171:238-255.
[23] WEIJERS J W H,SCHEFU? E,KIM J H,et al.Constraints on the sources of branched tetraether membrane lipids in distal marine sediments[J].Organic Geochemis-try,2014,72:14-22.
[24] BLAGA C I,REICHART G J,HEIRI O,et al.Tetraether membrane lipid distributions in water-column particulate matter and sediments:a study of 47 European lakes along a north-south transect[J].Journal of Paleolimnology,2009,41(3):523-540.
[25] SINNINGHE DAMSTé J S,OSSEBAAR J,SCHOUTEN S,et al.Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa:extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake[J].Quaternary Science Reviews,2012,50:43-54.
[26] TAYLOR K W R,HUBER M,HOLLIS C J,et al.Re-evaluating modern and Palaeogene GDGT distributions:implications for SST reconstructions[J].Global and Planetary Change,2013,108:158-174.
[27] BASSE A,ZHU C,VERSTEEGH G J M,et al.Distribution of intact and core tetraether lipids in water column profiles of suspended particulate matter off Cape Blanc,NW Africa[J].Organic Geochemistry,2014,72:1-13.
[28] KIM J H,SCHOUTEN S,RODRIGO-GáMIZ M,et al.Influence of deep-water derived isoprenoid tetraether lipids on the TEXH86 paleothermometer in the Mediterranean Sea[J].Geochimica et Cosmochimica Acta,2015,150:125-141.
[29] KIM J H,VILLANUEVA L,ZELL C,et al.Biological source and provenance of deep-water derived isoprenoid tetraether lipids along the Portuguese continental margin[J].Geochimica et Cosmochimica Acta,2016,172:177-204.
[30] 郭威,叶丰,贾国东.珠江口表层水体颗粒物中古菌四醚类脂物的分布特征[J].海洋学报,2017,39(8):1-15.
[31] WANG P,LI T,HU A,et al.Community structure of archaea from deep-sea sediments of the South China Sea[J].Microbial Ecology,2010,60(4):796-806.
[32] DU J,XIAO K,HUANG Y,et al.Seasonal and spatial diversity of microbial communities in marine sediments of the South China Sea[J].Antonie van Leeuwenhoek,2011,100(3):317-331.
[33] TURICH C,FREEMAN K H,BRUNS M A,et al.Lipids of marine archaea:patterns and provenance in the water-column and sediments[J].Geochimica et Cosmochimica Acta,2007,71(13):3272-3291.
[34] LINCOLN S A,WAI B,EPPLEY J M,et al.Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean[J].Proc Natl Acad Sci USA,2014,111(27):9858-9863.
[35] XING L,HOU D,WANG X C,et al.Assessment of the sources of sedimentary organic matter in the Bohai Sea and the northern Yellow Sea using biomarker proxies[J].Estuarine,Coastal and Shelf Science,2016,176:67-75.
[36] XIAO W J,XU Y P,DING S,et al.Global calibration of a novel,branched GDGT-based soil pH proxy[J].Organic Geochemistry,2015,89/90:56-60.
[37] DE JONGE C,STADNITSKAIA A,HOPMANS E C,et al.In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River,Eastern Siberia[J].Geochimica et Cosmochimica Acta,2014,125:476-491.
[38] SINNINGHE DAMSTé J S.Spatial heterogeneity of sources of branched tetraethers in shelf systems:the geochemistry of tetraethers in the Berau River delta(Kalimantan,Indonesia)[J].Geochmica et Cosmo-chimica Acta,2016,186:13-31.

备注/Memo

备注/Memo:
收稿日期:2018-05-25 录用日期:2018-08-06
基金项目:国家自然科学基金青年基金(41606091); 上海海洋大学科技发展自然专项基金(A2-0203-00-100214)
*通信作者:hmge@shou.edu.cn
引文格式:葛黄敏,吴伟艳,幸继联.南海北部表层沉积物中甘油二烷基甘油四醚随水深的分布特征[J].厦门大学学报(自然科学版),2018,57(6):778-787.
Citation:GE H M,WU W Y,XING J L.Distribution characteristics ofglycerol dialkyl glycerol tetraethers in surface sediments with water depth in the northern South China Sea[J].J Xiamen Univ Nat Sci,2018,57(6):778-787.(in Chinese)
更新日期/Last Update: 1900-01-01