|本期目录/Table of Contents|

[1]陈 勇*,黄国钦,罗光华,等.砂轮偏心回转对精磨表面形貌特征量的影响[J].厦门大学学报(自然科学版),2018,57(05):729-735.[doi:10.6043/j.issn.0438-0479.201805008]
 CHEN Yong*,HUANG Guoqin,LUO Guanghua,et al.Influence of Abrasive Wheel Eccentrically Rotating Behavior on Surface Topography Characteristics in Precision Grinding Process[J].Journal of Xiamen University(Natural Science),2018,57(05):729-735.[doi:10.6043/j.issn.0438-0479.201805008]
点击复制

砂轮偏心回转对精磨表面形貌特征量的影响(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年05期
页码:
729-735
栏目:
研究论文
出版日期:
2018-09-27

文章信息/Info

Title:
Influence of Abrasive Wheel Eccentrically Rotating Behavior on Surface Topography Characteristics in Precision Grinding Process
文章编号:
0438-0479(2018)05-0729-07
作者:
陈 勇1*黄国钦2罗光华3柯翔敏3
1. 华侨大学机电及自动化学院,2. 华侨大学制造工程研究院,3. 华侨大学网络与教育技术中心,福建 厦门 361021
Author(s):
CHEN Yong1*HUANG Guoqin2LUO Guanghua3KE Xiangmin3
1.College of Mechanical Engineering and Automation,Huaqiao University,2.Institute of Manufacturing Engineering,Huaqiao University,3.Center of Internet and Education Technology,Huaqiao University,Xiamen 361021,China
关键词:
偏心回转 表面形貌 非线性振动 磨削动力学
Keywords:
eccentrical rotation surface topography non-linear vibration grinding dynamics
分类号:
TG 54; TP 391.9
DOI:
10.6043/j.issn.0438-0479.201805008
文献标志码:
A
摘要:
因主轴装配精度和动态磨耗等导致的砂轮偏心回转行为对精磨表面质量具有重要影响.以砂轮偏心顺磨为例,改进相邻磨粒瞬态切削深度(简称切深)模型并深入分析偏心激振机理.加工表面划痕截面特征测量结果与三维表面形貌仿真结果的比较表明:砂轮偏心回转微量变化对同等实验条件下的工件表面形貌和加工精度具有较大影响.当砂轮偏心值在1 μm以内时,相邻磨粒连续切深分布均匀,加工表面划痕平均切深Rt约为预设切深值ap的40%,表面粗糙度的实验测量与仿真结果基本一致; 当其值达到3 μm时,工作磨粒切入-切出瞬态冲击与强迫激振加剧,使得加工表面最大划痕深度超过ap值的5.6%左右,工件表面粗糙度与稳定状态相比增加近1倍,加工表面划痕深度非线性分布呈现复杂特征.
Abstract:
Kinematic/dynamic behaviors of abrasive wheels under eccentrically rotating conditions,which result from low wheel-spindle assembly accuracy of the machining tool and non-uniform wear distribution of the wheel,inevitably influence the final surface precision of machined product.In the paper,the governing mechanism of eccentrically rotating behaviors of the wheel on instantaneous depth of cut and chatter characteristics between adjacent abrasive grits in contact zone is investigated,then the improved analytical model of depth of cut in down-grinding is presented.By comparing 3D simulation results with experimental signals on micro-morphology of workpiece surface,the result demonstrates that the influence of eccentrical rotation deviation of abrasive wheels on surface topography and machine precision is great under consistent experimental conditions.The tendency of cutting depth distribution of adjacent abrasive grits remains stable and the average depth of scratching marks on sampled workpiece surface is almost 40% of preset cutting depth prior to grinding when the eccentricity value of the wheel is controlled within 1 μm.Nevertheless,due to comprehensive influence of dynamic impact in grits cutting-in phase and forced-exciting vibrations of abrasive wheel when the eccentricity value of the wheel is up to 3 μm,the depth of scratching marks is bigger by around 6% than the predetermined value in machining process,leading to approximately double reduction of surface roughness comparing with the result of stable machining situation.Moreover,complex and nonlinear depth distributions of scratching marks on machined surface exists.

参考文献/References:

[1] 伍良生,魏源迁,李剑锋,等.高速磨削中的快速现场动平衡技术[J].金刚石与磨料磨具工程,2004(2):10-13.
[2] 姜永武,林跃.砂轮不平衡量对磨削表面波纹度影响[J].长春理工大学学报(自然科学版),2001,24(3):29-32.
[3] 陈冰,王各,刘建明,等.圆弧形砂轮精密修整及其声发射在线监测技术[J].中国机械工程,2017,28(18):2242-2249.
[4] 陈海深,张喜平.金属结合剂金刚石成型砂轮电火花修整方法研究[J].工具技术,2015,49(6):25-29.
[5] 邓辉,陈根余,周聪,等.脉冲激光切向整形径向修锐青铜金刚石砂轮[J].中国激光,2014,41(11):60-68.
[6] 柯晓龙,郭隐彪,王振忠,等.圆弧金刚石砂轮精密修形与精度评价技术[J].厦门大学学报(自然科学版),2013,52(6):797-801.
[7] 尹明泉,景敏卿,刘恒,等.高速磨削过程在线自动动平衡控制方法及仿真研究[J].组合机床与自动化加工技术,2011(12):44-48
[8] 秦源章,张琳娜,郑鹏.基于单片机的磨床砂轮动平衡测控系统的设计[J].制造技术与机床,2015(10):50-53.
[9] 薛兵,张琳娜,郑鹏,等.磨床砂轮动平衡测控系统控制新策略[J].机械设计与制造,2018(1):137-139.
[10] 马海涛,马淑范,刘鑫阳,等.重块式砂轮动平衡自寻优模糊控制器[J].长春工业大学学报,2015,36(2):163-166.
[11] 郭隐彪,郑琳,王振忠.高精度非球面加工双轴动平衡监控技术研究[J].光学精密工程,2006,13(3):434-438.
[12] BADGER J,MURPHY S,DONNELL G.The effect of wheel eccentricity and run-out on grinding forces,waviness,wheel wear and chatter[J].International Journal of Machine Tools and Manufacture.2011(51):766-774.
[13] CHEN Y,HUANG G Q.Development and research on the dynamics simulation system for surface grinding process with diamond wheel[J].Key Engineering Materials,2014(589/590):658-664.
[14] 韩正铜,张永忠,黄民,等.磨削过程振动特征的实验研究[J].制造技术与机床,2004(2):63-65.
[15] CHEN Y,CHEN X,XU X P,et al.Effect of energy consumption in the contact zone on machining condition optimization in precision surface grinding[J].Journal of Mechanical Engineering,2018(64):1-12.
[16] 毕果,郭隐彪,郑茂江.砂轮磨削振动对工件表面形貌特征的影响研究[J].机械科学与技术,2013,32(8):1118-1123.
[17] 黄辉,林思煌,徐西鹏.单颗金刚石磨粒磨削玻璃的磨削力研究[J].中国机械工程,2010,21(11):1278-1282.
[18] 任敬心,华定安.磨削原理[M].北京:电子工业出版社,2011:206-210.
[19] AURICH J C,KIRSH B.Kinematic simulation of high-performance grinding for analysis of chip parameters of single grits[J].CIRP Journal of Manufacturing Science Technology,2012(5):164-174.
[20] 翁泽宇,丁红钢,郭明飞,等.平面磨削颤振试验研究[J].机械强度,2006,28(1):25-28.
[21] INASAKI I,KARPUSCHEWSKI B,LEE H.Grinding chatter-origin and suppression[J].Annals of CIRP Manufacturing Technology,2001(50):515-534.
[22] ALTINTAS Y,WECK M.Chatter stability of metal cutting and grinding[J].Annals of CIRP Manufacturing Technology,2004(53):619-642.

备注/Memo

备注/Memo:
收稿日期:2018-05-05录用日期:2018-08-06
基金项目:国家自然科学基金(51235004,51575198)
*通信作者:chenyong@hqu.edu.cn
引文格式:陈勇,黄国钦,罗光华,等.砂轮偏心回转对精磨表面形貌特征量的影响[J].厦门大学学报(自然科学版),2018,57(5):729-735.
Citation:CHEN Y,HUANG G Q,LUO G H,et al.Influence of abrasive wheel eccentrically rotating behavior on surface topography characteristics in precision grinding process[J].Xiamen Univ Nat Sci,2018,57(5):729-735.(in Chinese)
更新日期/Last Update: 1900-01-01