|本期目录/Table of Contents|

[1]艾合买提·阿不来提,张 文*.带关闭期的随机N-策略的 M/G/1 排队模型的适定性[J].厦门大学学报(自然科学版),2018,57(05):688-694.[doi:10.6043/j.issn.0438-0479.201709032]
 EHMET Ablet,ZHANG Wen*.Well-Posedness of The M/G/1 Queue Under VacationPolicies with Closedown Time and the Random N-policy[J].Journal of Xiamen University(Natural Science),2018,57(05):688-694.[doi:10.6043/j.issn.0438-0479.201709032]
点击复制

带关闭期的随机N-策略的 M/G/1 排队模型的适定性(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年05期
页码:
688-694
栏目:
研究论文
出版日期:
2018-09-27

文章信息/Info

Title:
Well-Posedness of The M/G/1 Queue Under VacationPolicies with Closedown Time and the Random N-policy
文章编号:
0438-0479(2018)05-0688-07
作者:
艾合买提·阿不来提12张 文2*
1. 新疆财经大学应用数学学院,新疆 乌鲁木齐 830012; 2. 厦门大学数学科学学院,福建 厦门 361005
Author(s):
EHMET Ablet12ZHANG Wen2*
1.School of Application Mathematics,Xinjiang University of Finance and Economics,Urumqi 830012,China; 2.School of Mathematical Sciences,Xiamen University,Xiamen 361005,China
关键词:
带关闭期的随机N-策略的 M/G/1 排队系统 C0-半群 非负解
Keywords:
M/G/1 queuing model random N-policy C0-semigroup nonnegative solution
分类号:
TG 177.2; O 226
DOI:
10.6043/j.issn.0438-0479.201709032
文献标志码:
A
摘要:
主要研究带关闭期的随机N-策略的 M/G/1 排队系统.用算子理论把该模型转化成抽象的Cauchy问题,证明对应该模型的主算子生成一个 C0-半群T(t),得到该模型存在非负的唯一解.
Abstract:
This paper studies the M/G/1 queueing model under vacation policies with closedown time and the Random N-policy. Firstly,we convert the mathematical model into an abstract Cauchy problem by using operator theoty. Secondly,we show that the operator corresponding to this queuing model generates a positive C0-semigroup T(t). Finally,we conclude that this model has a unique nonnegative solution.

参考文献/References:

[1] YADIN M,NAOR P.Queueing systems with a removable service station[J].Operational Research Quarterly,1963,14:393-405.
[2] KELLA O.The threshold policy in the M/G/1 queue with server vacations[J].Naval Research Logistics,1989,36:111-123.
[3] BORTHAKUR A,MEDHI J,GOHAIN R.Poisson input queueing systems with startup time and under control operating policy[J].Computers and Operations Research,1987,14:33-40.
[4] BAKER K R.A note on operating policies for the queue M/M/1 with exponential startup[J].INFOR,1973,11:71-72.
[5] LEE H W,LEE S S,PARK J O,et al.Analysis of MX/G/1 queue with N policy and multiple vacations[J].Journal of Applied Probability,1994,31:467-496.
[6] TAKAGI H.Vacation and priority systems,part I[M]∥Queueing analysis:a foundation of performance evaluation.Vol.I.Amsterdam:the Netherlands,1991:135-136.
[7] KE J C.On M/G/1 system under NT policies with breakdowns,startup and closedown[J].Applied Mathematical Modelling,2006,30:49-66.
[8] LIU M W,MA Y K,DENG B.The system size distribution for M/G/1 queueing system under N-policy with startup/closedown[J].Scientific Research,2010,2:363-369.
[9] FENG J Y,WU Y J.The M/G/1 queue under vacation policies with closedown time and the random N-policy[J].Chinese Journal of Enginering Mathematics,2009,26:466-474.
[10] YAO Y,SHI PH.The M/G/1 queue with random N-policy[J].Comm on Appl Math and Comput,1994,8:1-12.
[11] ADAMS R A.Sobolev spaces[M].New York:Academic Press,1975:28-31.
[12] GUPUR G,LI X Z,ZHU G T.Existence and uniqueness of nonnegative solution of M/GB/1 queueing model[J].Computers and Mathematics with Applications,2000,39:199-209.
[13] ARENDT W.Resolvent positive operaors[J].Proc London Math Soc,1987,3:321-349.
[14] PAZY A.Semigroup of linear operators and application to partial differential equations[M].New York:Springer-Verlag,1983:100-135.

备注/Memo

备注/Memo:
收稿日期:2017-09-29 录用日期:2018-04-08
基金项目:国家自然科学基金(11471270); 福建省自然科学基金(2015J01022); 新疆财经大学校级科学基金(2015XYB009); 中央高校基础研究(20720160010)
*通信作者:wenzhang@xmu.edu.cn
引文格式:艾合买提·阿不来提,张文.带关闭期的随机N-策略的M/G/1 排队模型的适定性[J].厦门大学学报(自然科学版),2018,57(5):688-694.
Citation:Ablet E,Zhang W.Well-posedness of the M/G/1 queue under vacation policies with closedown time and the random N-policy[J].J Xiamen Univ Nat Sci,2018,57(5):688-694.(in Chinese)
更新日期/Last Update: 1900-01-01