|本期目录/Table of Contents|

[1]王 波*,施慧华,孟庆丰.局部(弱)紧性的理想收敛刻画[J].厦门大学学报(自然科学版),2018,57(05):684-687.[doi:10.6043/j.issn.0438-0479.201802002]
 WANG Bo*,SHI Huihua,MENG Qingfeng.Characterization of Locally(Weakly)Compact Sets Via Ideal Convergence[J].Journal of Xiamen University(Natural Science),2018,57(05):684-687.[doi:10.6043/j.issn.0438-0479.201802002]
点击复制

局部(弱)紧性的理想收敛刻画(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年05期
页码:
684-687
栏目:
研究论文
出版日期:
2018-09-27

文章信息/Info

Title:
Characterization of Locally(Weakly)Compact Sets Via Ideal Convergence
文章编号:
0438-0479(2018)05-0684-04
作者:
王 波*施慧华孟庆丰
华侨大学数学科学学院,福建 泉州 362021
Author(s):
WANG Bo*SHI HuihuaMENG Qingfeng
School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China
关键词:
极大理想 理想收敛 局部(弱)紧(弱)紧
Keywords:
maximal ideal ideal convergence locally(weakly)compact(weakly)compact
分类号:
O 177. 2
DOI:
10.6043/j.issn.0438-0479.201802002
文献标志码:
A
摘要:
将理想收敛应用到Banach空间研究中,利用序列的(弱)极大理想收敛来刻画局部(弱)紧集,作为推论也得到了(弱)紧集合的(弱)极大理想收敛刻画.
Abstract:
This paper applies ideal convergence to the research of Banach spaces.Such an application characterizes locally(weakly)compact sets by using the(weakly)maximally ideal convergence of the sequence.Consequently,we can also get the characterization of(weakly)compact sets via(weakly)maximally ideal convergence.

参考文献/References:

[1] ZYGMUND A.Trigonometric series[M].2nd ed.Cambridge:Cambridge Univ Press,1979:74.
[2] FAST H.Sur la convergence statistique[J].Colloq Math,1951,2:241-244.
[3] STEINHAUS H.Sur la convergence ordinarie et la convergence asymptotique[J].Colloq Math,1951,2:73-74.
[4] CHENG L X,LIN G C,LAN Y Y,et al.Measure theory of statistical convergence[J].Sci China Ser A,2008,51(12):2285-2303.
[5] CHENG L X,LIN G C,SHI H H.On real-valued measures of statistical type and their applications to statistical convergence[J].Math Comput Modelling,2009,50:116-122.
[6] BAO L X,CHENG L X.On statistical measure theory[J].J Math Anal Appl,2013,407(2):413-424.
[7] MADDOX I J.Statistical convergence in a locally convex space[J].Math Proc Cambridge Philos Soc,1988,104:141-145.
[8] CONNOR J,GANICHEV M,KADETS V.A characterization of Banach spaces with separable duals via weak statistical convergence[J].J Math Anal Appl,2000,244(1):251-261.
[9] KADETS V.Weak cluster points of a sequence and covering by cylinder[J].Mat Fiz Anal Geom,2004,11(2):161-168.
[10] KADETS V,LEONOV A,ORHAN C.Weak statistical convergence and weak filter convergence for unbounded sequences[J].J Math Anal Appl,2010,371:414-424.
[11] MAIO G D,KOCINAC L D R.Statistical convergence in topology[J].Topol Appl,2008,156:28-45.
[12] CONNOR J.On strong matrix summability with respect to a modulus and statistical convergence[J].Canad Math Bull,1989,32(2):194-198.
[13] FRIDY J,ORHAN C.Lacunary statistical convergence[J].Pacific J Math,1993,160(1):43-51.
[14] KOSTYRKO P,ALáT T,WILCZYNSKI W.I-convergence[J].Real Anal Exchange,2000,26(2):669-689.
[15] CHENG L X,CHENG Q J,LUO Z H.On some new characterizations of weakly compact sets in Banach spaces[J].Studia Math,2010,201(2):155-166.

备注/Memo

备注/Memo:
收稿日期:2018-02-07 录用日期:2018-04-08
基金项目:国家自然科学基金(11401227); 福建省自然科学基金(2015J05007)
*通信作者:wangbo2013@hqu.edu.cn
引文格式:王波,施慧华,孟庆丰,等.局部(弱)紧性的理想收敛刻画[J].厦门大学学报(自然科学版),2018,57(5):684-687.
Citation:WANG B,SHI H H,MENG Q F.Characterization of locally(weakly)compact sets via ideal convergence[J].J Xiamen Univ Nat Sci,2018,57(5):684-687.(in Chinese)
更新日期/Last Update: 1900-01-01