|本期目录/Table of Contents|

 LI Xiaohang,ZHENG Nianfeng,HAN Shoufa*.An Electropotential-responsive Probe for the Study of Bacterial Acidification-imaging[J].Journal of Xiamen University(Natural Science),2018,57(04):455-462.[doi:10.6043/j.issn.0438-0479.201801020]





An Electropotential-responsive Probe for the Study of Bacterial Acidification-imaging
厦门大学化学化工学院,福建 厦门 361005
LI XiaohangZHENG NianfengHAN Shoufa*
College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
细菌成像 酸化 pH探针 电势差响应
bacterial imaging acidification pH probe electric potential difference response
O 657.3
酸响应化学传感器已广泛用于哺乳动物细胞的成像,但目前缺乏用于研究酸性环境与细菌相互作用的细菌定位探针.为此,设计合成了一个电势差响应阳离子探针CM-RB,它由一个具有蓝色荧光的香豆素和一个带正电荷的酸敏感罗丹明结构单元构成.对CM-RB进行pH滴定、毒性测试及其在酸性环境下细菌内部的荧光响应研究.结果表明:CM-RB在细菌跨膜负电势的驱动下,聚集在细菌内部时产生蓝色荧光; 当细菌处于酸性条件下时,探针的酸敏感罗丹明结构单元产生红色荧光.CM-RB的活细菌靶向性及pH关联双色响应显示该探针具有用于细菌内部酸化过程分析的可行性.
Acidity-reporting chemosensors have been widely used in the imaging of mammalian cells,but there are currently lack of bacterial localization probes for studying the interaction between acidic environment and bacteria.In this study,an electropotential-responsive cationic probe CM-RB was designed,which was composed of a blue fluorescent coumarin unit and a positive acid sensitive rhodamine structure unit.The pH titration,toxicity test of CM-RB and the fluorescence response of bacteria in the acidic environment were studied.The results showed that CM-RB gathered inside of bacterial and generated blue fluorescence,when it was driven by the bacterial transmembrane negative potential; when bacteria were under acidic conditions,the acid sensitive rhodamine structure unit of probe produced red fluorescence.The living bacterial target and pH associated two-color response show that CM-RB has the feasibility of analyzing the acidification process of bacteria.


[1] BAIK H S,BEARSON S,DUNBAR S,et al.The acid to-lerance response of Salmonella typhimurium provides protection against organic acids[J].Microbiology,1996,142(11):3195-3200.
[2] LIN J,LEE I S,FREY J,et al.Comparative analysis of extreme acid survival in Salmonella typhimurium,Shigella flexneri,and Escherichia coli[J].Journal of Bacteriology,1995,177(14):4097-4104.
[3] SLONCZEWSKI J L,ROSEN B P,ALGER J R,et al.pH homeostasis in Escherichia coli:measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate[J].Proc Nat Acad Sci USA,1981,78(10):6271-6275.
[4] LIU J,DIWU Z,KLAUBERT D H.Fluorescent molecular probes Ⅲ.2’,7’-Bis-(3-carboxypropyl)-5-(and-6)-carboxyfluorescein(BCPCF):a new polar dual-excitation and dual-emission pH indicator with a pKa of 7.0[J].Bioorganic & Medicinal Chemistry Letters,1997,7(23):3069-3072.
[5] LIN S,ZHANG Z,XU H,et al.Site-specific incorporation of photo-cross-linker and bioorthogonal amino acids into enteric bacterial pathogens[J].J Am Chem Soc,2011,133(50):20581-20587.
[6] TIAN Y,YU M,LI Z,et al.Optical tracking of phagocytosis with an activatable profluorophore metabolically incorporated into bacterial peptidoglycan[J].Analytical Chemistry,2015,87(16):8381-8386.
[7] OLSEN K N,BUDDE B B,SIEGUMFELDT H,et al.Noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent protein and fluorescence ratio imaging microscopy[J].Applied and Environmental Microbiology,2002,68(8):4145-4147.
[8] ASANUMA D,TAKAOKA Y,NAMIKI S,et al.Acidic-pH-activatable fluorescence probes for visualizing exocytosis dynamics[J].Angew Chem Int Ed,2014,53(24):6085-6089.
[9] MOON R B,RICHARDS J H.Determination of intracellular pH by 31P magnetic resonance[J].Journal of Biological Chemistry,1973,248(20):7276-7278.
[10] WILKS J C,SLONCZEWSKI J L.pH of the cytoplasm and periplasm of Escherichia coli:rapid measurement by green fluorescent protein fluorimetry[J].Journal of Bacteriology,2007,189(15):5601-5607.
[11] ZHANG W,TANG B,LIU X,et al.A highly sensitive acidic pH fluorescent probe and its application to HepG2 cells[J].Analyst,2009,134(2):367-371.
[12] CHIN E R,ALLEN D G.The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres[J].The Journal of Physiology,1998,512(3):831-840.
[13] SIEGUMFELDT H,RECHINGER K B,JAKOBSEN M.Use of fluorescence ratio imaging for intracellular pH determination of individual bacterial cells in mixed cultures[J].Microbiology,1999,145(7):1703-1709.
[14] MOLENAAR D,ABEE T,KONINGS W N.Continuous measurement of the cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator[J].Biochimica et Biophysica Acta:General Subjects,1991,1115(1):75-83.
[15] MCFETERS G A,YU F P,PYLE B H,et al.Physiological assessment of bacteria using fluorochromes[J].Journal of Microbiological Methods,1995,21(1):1-13.
[16] THIEBAUT F,CURRIER S J,WHITAKER J,et al.Activity of the multidrug transporter results in alkalinization of the cytosol:measurement of cytosolic pH by microinjection of a pH-sensitive dye[J].Journal of Histochemistry & Cytochemistry,1990,38(5):685-690.
[17] GREEN F A.Leukotriene production associated with leukocyte membrane destruction[J].Inflammation,1988,12(2):133-140.
[18] HAN J,LOUDET A,BARHOUMI R,et al.A ratiometric pH reporter for imaging protein-dye conjugates in living cells[J].J Am Chem Soc,2009,131(5):1642-1643.
[19] HAN J,BURGESS K.Fluorescent indicators for intracellular pH[J].Chemical Reviews,2010,110(5):2709-2728.
[20] GRABOWSKI J,KE-CHENG H,BAKER P R,et al.Fluorogenic compound hydrolysis as a measure of toxicity-induced cytoplasmic viscosity and pH changes[J].Environmental Pollution,1997,98(1):1-5.
[21] PE?A A,RAMíREZ J,ROSAS G,et al.Proton pumping and the internal pH of yeast cells,measured with pyranine introduced by electroporation[J].Journal of Bacteriology,1995,177(4):1017-1022.
[22] WISNOVSKY S,LEI E K,JEAN S R,et al.Mitochondrial chemical biology:new probes elucidate the secrets of the powerhouse of the cell[J].Cell Chemical Biology,2016,23(8):917-927.
[23] MURPHY M P.Targeting lipophilic cations to mitochondria[J].Biochimica et Biophysica Acta:Bio-energetics,2008,1777(7/8):1028-1031.
[24] TAMURA T,TSUKIJI S,HAMACHI I.Native FKBP12 engineering by ligand-directed tosyl chemistry:labeling properties and application to photo-cross-linking of protein complexes in vitro and in living cells[J].J Am Chem Soc,2012,134(4):2216-2226.
[25] GRIMM J B,LAVIS L D.Synthesis of rhodamines from fluoresceins using Pd-catalyzed C—N cross-coupling[J].Organic Letters,2011,13(24):6354-6357.
[26] AIGNER D,BORISOV S M,ORRIACH FERNáNDEZ F J,et al.New fluorescent pH sensors based on covalently linkable PET rhodamines[J].Talanta,2012,99(2/3):194-201.
[27] BISSELL R A,DE SILVA A P,GUNARATNE H Q N,et al.Molecular fluorescent signalling with ’fluor-spacer-receptor’ systems:approaches to sensing and switching devices via supramolecular photophysics[J].Chemical Society Reviews,1992,21(3):187-195.
[28] DE SILVA A P,GUNARATNE H Q N,HABIB-JIWAN J L,et al.New fluorescent model compounds for the study of photoinduced electron transfer:the influence of a molecular electric field in the excited state[J].Angew Chem Int Ed,1995,34(16):1728-1731.
[29] DE SILVA A P,VANCE T P,WEST M E S,et al.Bright molecules with sense,logic,numeracy and utility[J].Organic & Biomolecular Chemistry,2008,6(14):2468-2480.
[30] KOIDE Y,URANO Y,HANAOKA K,et al.Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer[J].ACS Chemical Biology,2011,6(6):600-608.
[31] KUBO K,MORI A.PET fluoroionophores for Zn2+ and Cu2+:complexation and fluorescence behavior of anthracene derivatives having diethylamine,N-methylpiperazine and N,N-bis(2-picolyl)amine units[J].Journal of Materials Chemistry,2005,15(27/28):2902-2907.
[32] WERNER T,HUBER C,HEINL S,et al.Novel optical pH-sensor based on a boradiaza-indacene derivative[J].Fresenius’ Journal of Analytical Chemistry,1997,359(2):150-154.


收稿日期:2018-01-22 录用日期:2018-03-22
Citation:LI X H,ZHENG N F,HAN S F.An electropotential-responsive probe for the study of bacterial acidification-imaging[J].J Xiamen Univ Nat Sci,2018,57(4):455-462.(in Chinese)
更新日期/Last Update: 1900-01-01