|本期目录/Table of Contents|

[1]张楷涵,袁 飞*,程 恩.侧扫声呐图像噪声模型的分析[J].厦门大学学报(自然科学版),2018,57(03):390-395.[doi:10.6043/j.issn.0438-0479.201708005]
 ZHANG Kaihan,YUAN Fei*,CHENG En.Analysis of Side-scan Sonar Image Noise Model[J].Journal of Xiamen University(Natural Science),2018,57(03):390-395.[doi:10.6043/j.issn.0438-0479.201708005]
点击复制

侧扫声呐图像噪声模型的分析(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年03期
页码:
390-395
栏目:
研究论文
出版日期:
2018-05-31

文章信息/Info

Title:
Analysis of Side-scan Sonar Image Noise Model
文章编号:
0438-0479(2018)03-0390-06
作者:
张楷涵袁 飞*程 恩
厦门大学水声通信与海洋信息技术教育部重点实验室,福建 厦门 361005
Author(s):
ZHANG KaihanYUAN Fei*CHENG En
Key Laboratory of Underwater Acoustic Communication and Marine Information Technology Ministry of Education,Xiamen University,Xiamen 361005,China
关键词:
海底混响 概率分布 声呐图像 底质分类 多元回归
Keywords:
seabed reverberation probability distributions sonar image sediment classification multiple regression
分类号:
TP 391.41
DOI:
10.6043/j.issn.0438-0479.201708005
文献标志码:
A
摘要:
侧扫声呐图像在获取的过程中由于其成像机理和复杂的海底环境会产生斑点噪声,其中由于不同底质类型形成的海底混响是造成这些斑点噪声的一个主要因素.首先利用5种典型的概率分布对海底混响的统计特性进行拟合得到了最优的拟合分布.再通过分析灰度直方图相关的特征参数,提出了基于两个特征参数对最优分布参数的估计.最终,通过多元回归分析实现了侧扫声呐图像噪声模型的建立和不同底质类型的图像分类.实验结果表明:伽马分布模型具有拟合特性准确和概率计算便捷的优势; 根据模型参数与图像特征所得到的模型可以有效地模拟不同底质类型混响所导致的噪声,有利于底质的分类和噪声的消除.
Abstract:
Side-scan sonar image contain speckle noises due to their characteristics of imaging mechanism and complicated seabed environment in the acquisition process.Seabed reverberations of different types of substrates often exert different effects on lateral-scan sonar imaging.Based on the analysis of the seabed reverberation statistical model,the optimal fitting distribution model is obtained under five typical probability distribution models and the evaluation based on two eigenvalues is proposed after analyzing the characteristic parameters of gray histogram.Finally,the noise model of side-scan sonar image and image classification of different sediment types were achieved by multiple regression model analyses.Experimental results show that Gamma distribution model enjoys the advantages of accurate fitting characteristics and convenient calculation of probability.According to model parameters and image features,the model can effectively simulate the noise caused by different sediment types of reverberation,and is conducive to the classification of the sediment and the elimination of noise.

参考文献/References:

[1] 栾桂冬.数字式声呐设计原理[J].声学学报,2003(4):385.
[2] 王美娜,边刚,孙超,等.海洋测深中垂直分置海底混响信号的仿真分析[J].海洋测绘,2017,37(1):75-78.
[3] MIDDLETON D.New physical-statistical methods and models for clutter and reverberation:the KA-distribution and related probability structures[J].IEEE Journal of Oceanic Engineering,1999,24(3):261-284.
[4] GENSANE M.A statistical study of acoustic signals backscattered from the sea bottom[J].IEEE Journal of Oceanic Engineering,1989,14(1):84-93.
[5] JAKEMAN E,PUSEY P N.Significance of K distributions in scattering experiments[J].Physical Review Letters,1978,40(9):546-550.
[6] COBB J T,SLATTON K C.A parameterized statistical sonar image texture model[J].Detection and Sensing of Mines Explosive Objects and Obscured Targets ,2008,35(2):6953.
[7] 田晓东,童继进,刘忠.声呐图像背景灰度分布特性分析及模型研究[J].声学技术,2006,25(5):468-472.
[8] 刘伯胜,雷家煜,刘波声.水声学原理[M].哈尔滨:哈尔滨工程大学出版社,1993:187.
[9] 范习健,李庆武,黄河,等.侧扫声呐图像的3维块匹配降斑方法[J].中国图象图形学报,2012,17(1):71-77.
[10] MIDDLETON D.Correction to "A statistical theory of reverberation and similar first-order scattered fields-part Ⅲ,waveform andfields-part Ⅳ.statistical models"[J].IEEE Transactions on Information Theory,1975,21(1):97-99.
[11] 霍冠英,刘静,李庆武.侧扫声呐图像统计特性研究[J].传感器与微系统,2017,36(3):25-28.
[12] MIGNOTTE M,COLLET C,PéREZ P,et al.Three-class Markovian segmentation of high-resolution sonar images[J].Computer Vision and Image Understanding,1999,76(3):191-204.
[13] MIGNOTTE M,COLLET C,PEREZ P,et al.Sonar image segmentation using an unsupervised hierarchical MRF model[J].IEEE Transactions on Image Processing,2000,9(7):1216-1231.
[14] 黄超.对数正态分布的参数估计[J].高等数学研究,2015,18(4):4,20.
[15] 孙增国.高分辨率合成孔径雷达图像的Gamma分布下最大后验概率降斑算法 [J].物理学报,2013,62(18):73-78.
[16] 周强,杨俭,曲长文,等.多视SAR图像K分布特征函数与统计量研究[J].信号处理,2017(7):1002-1009.
[17] HEFNER B T.Characterization of seafloor roughness to support modeling of midfrequency reverberation[J].IEEE Journal of Oceanic Engineering,2017,42(4):1110-1124.
[18] ALEXANDROU D,DE MOUSITER C,HARALABUS G.Evaluation and verification of bottom acoustic reverberation statistics predicted by the point scattering model[J].Journal of the Acoustical Society of America,1992,91(3):1403-1413.
[19] 吕良,周超烨,陈春,等.基于虚警函数的侧扫声纳水下目标实时检测方法[J].海洋测绘,2013,33(4):35-38.
[20] BERGUI A E,QUIDU I,ZERR B,et al.Model based classification of mine-like objects in sidescan sonar using the highlight information[J].Proceedings of Meetings on Acoustics Acoustical Society of America,2012,17(1):22-30.
[21] 潘雪娟,朱尤攀,浦恩昌,等.基于熵的自动聚焦图像清晰度评价函数仿真分析[J].红外技术,2016,38(10):838-844.
[22] WANG S,GU K,ZHANG X,et al.Reduced-reference quality assessment of screen content images[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,28(1):1-14.

备注/Memo

备注/Memo:
收稿日期:2017-08-03 录用日期:2018-03-22
基金项目:国家自然科学基金(61471308,61571377)
*通信作者:yuanfei@xmu.edu.cn
引文格式:张楷涵,袁飞,程恩.侧扫声呐图像噪声模型的分析[J].厦门大学学报(自然科学版),2018,57(3):390-395.
Citation:ZHANG K H,YUAN F,CHENG E.Analysis of side-scan sonar image noise model[J].J Xiamen Univ Nat Sci,2018,57(3):390-395.(in Chinese)
更新日期/Last Update: 1900-01-01