|本期目录/Table of Contents|

[1]陈 语,陈海燕*.几种复合图的Bartholdi Zeta函数[J].厦门大学学报(自然科学版),2018,57(03):379-382.[doi:10.6043/j.issn.0438-0479.201706018]
 CHEN Yu,CHEN Haiyai*.The Bartholdi Zeta Function of Several Kinds of Composite Graphs[J].Journal of Xiamen University(Natural Science),2018,57(03):379-382.[doi:10.6043/j.issn.0438-0479.201706018]
点击复制

几种复合图的Bartholdi Zeta函数(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年03期
页码:
379-382
栏目:
研究论文
出版日期:
2018-05-31

文章信息/Info

Title:
The Bartholdi Zeta Function of Several Kinds of Composite Graphs
文章编号:
0438-0479(2018)03-0379-04
作者:
陈 语陈海燕*
集美大学理学院,福建 厦门 361021
Author(s):
CHEN YuCHEN Haiyai*
School of Sciences,Jimei University,Xiamen 361021,China
关键词:
Bartholdi Zeta 函数 三角点联图 剖分点联图 剖分边联图
Keywords:
Bartholdi Zeta function triangulation-vertex join subdivision-vertex join subdivision-edge join
分类号:
O 157.1
DOI:
10.6043/j.issn.0438-0479.201706018
文献标志码:
A
摘要:
G的 Bartholdi Zeta函数是一个二元函数.给定图G1G2,G1∨G2,G1·G2G1G2分别表示它们的三角点联图、剖分点联图和剖分边联图,得到了这3种复合图Bartholdi Zeta 函数的具体表达式.
Abstract:
The Bartholdi Zeta function of G is defined to be a function with two variables.For given graphs G1 and G2,let the triangulation-vertex join,subdivision-vertex join and subdivision-edge join of graph G1 and G2,be denoted by G1G2,G1·G2 and G1G2.In this paper,we obtain explicit expressions of the Bartholdi Zeta function for these three kinds of composite graphs.

参考文献/References:

[1] BARTHOLDI L.Counting paths in graphs[J].Ensignment Math,2000,45(1):83-131.
[2] IHARA Y.On discrete subgrouos of the two by two project linear group over p-adic fields[J].Matematika,1966,18(18):98-115.
[3] BASS H.The Ihara-Selberg zeta function of a tree lattice[J].Internat J Math,1992,3:717-797.
[4] FOATA D,ZEILBERGER D.A combinatorial proof of bass’s evaluations of the Ihara-Selberg zeta function for graphs[J].Trans Amer Math Soc,1999,351:2257-2274.
[5] STARK H M,TERRAS A A.Zeta functions of finite graphs and coverings[J].Adv Math,1996,121:124-165.
[6] STARK H M,TERRAS A A.Zeta functions of finite graphs and coverings,Part Ⅱ[J].Adv Math,2000,154:132-195.
[7] KOTANI M,SUNADA T.Zeta functions of finite graphs[J].J Math Sci U Tokyo,2000,7(1):7-25.
[8] INDULAL G.Spectrum of two new joins of graphs and infinite families of integral graphs[J].Kragujevac J Math,2012,36(1):133-139.
[9] CVETKOVI’C D M,ROWLINSON P,SIMMI’C H.An introduction to the theory of graph spectra[M].Cambridge:Cambridge University Press,2010:217-244.
[10] CVETKOVI’C D M,DOOB M,SACHS H.Spectra of graphs[M].New York:Academic Press,1982:22-28.
[11] KIM H K,LEE J.A generalized characteristic polynomial of a graph having a semifree action[J].Discrete Math,2008,308(4):555-564.
[12] ZHANG F Z.Theschur complement and its applications[M].Berlin:Springer,2005:1-15.

备注/Memo

备注/Memo:
收稿日期:2017-06-16 录用日期:2018-01-17
基金项目:国家自然科学基金(11171134,11301217); 福建省自然科学基金(2015J01017,2013J01014)
*通信作者:chey5@jmu.edu.cn
引文格式:陈语,陈海燕.几种复合图的Bartholdi Zeta函数[J].厦门大学学报(自然科学版),2018,57(3):379-382.
Citation:CHEN Y,CHEN H Y.The Bartholdi Zeta function of several kinds of composite graphs[J].J Xiamen Univ Nat Sci,2018,57(3):379-382.(in Chinese)
更新日期/Last Update: 1900-01-01