|本期目录/Table of Contents|

[1]袁 日 荣.带梯度项的广义复Monge-Ampère型方程的梯度估计[J].厦门大学学报(自然科学版),2018,57(03):369-372.[doi:10.6043/j.issn.0438-0479.201705012]
 YUAN Rirong.Gradient Estimates for Generalized Complex Monge-Ampère-type Equations with Gradient Terms[J].Journal of Xiamen University(Natural Science),2018,57(03):369-372.[doi:10.6043/j.issn.0438-0479.201705012]
点击复制

带梯度项的广义复Monge-Ampère型方程的梯度估计(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年03期
页码:
369-372
栏目:
研究论文
出版日期:
2018-05-31

文章信息/Info

Title:
Gradient Estimates for Generalized Complex Monge-Ampère-type Equations with Gradient Terms
文章编号:
0438-0479(2018)03-0369-04
作者:
袁 日 荣
厦门大学数学科学学院,福建 厦门 361005
Author(s):
YUAN Rirong
School of Mathematical Sciences,Xiamen University,Xiamen 361005,China
关键词:
广义复Monge-Ampère型方程 梯度估计 Hermitian流形
Keywords:
generalized complex Monge-Ampère type equation gradient estimate Hermitian manifold
分类号:
O 175.29
DOI:
10.6043/j.issn.0438-0479.201705012
文献标志码:
A
摘要:
利用Bernstein方法建立了Hermitian流形上带有梯度项的广义复Monge-Ampère型方程的梯度的先验估计.广义复Monge-Ampère型方程的结构在证明中发挥了重要作用.
Abstract:
We apply Bernstein method to derive the a priori gradient estimates for generalized complex Monge-Ampère-type equations involving gradient terms on compact Hermitian manifolds.Structural conditions of such generalized complex Monge-Ampère type equations play some crucial roles.

参考文献/References:

[1] GUAN P F,ZHANG X.Regularity of the geodesic equation in the space of Sasake metrics[J].Adv Math,2012,230:321-371.
[2] YUAN R R.On a class of fully nonlinear elliptic equations containing gradient terms on compact Hermitian manifolds[EB/OL].[2017-03-12].https:∥cms.math.ca/10.4153/CJM-2017-015-9.
[3] AUBIN T.Equations du type Monge-Ampère sur les varietes Kahleriennes compactes[J].Bull Sci Math,1978,102:63-95.
[4] BEDFORD E,TAYLOR B.The Dirichlet problem for a complex Monge-Ampère equation[J].Invent Math,1976,37:1-44.
[5] CAARELLI L A,KOHN J,NIRENBERG L,et al.The Dirichlet problem for nonlinear second-order elliptic equations,Ⅱ.Complex Monge-Ampère,and uniformaly elliptic,equations[J].Comm Pure Appl Math,1985,38:209-252.
[6] YAU S T.On the Ricci curvature of a compact Kahler manifold and the complex Monge-Ampère equation Ⅰ[J].Comm Pure Appl Math,1978,31:339-411.
[7] CHEN X X.A new parabolic ow in Kahler manifolds[J].Comm Anal Geom,2004,12:837-852.
[8] DONALDSON S K.Moment maps and dieomorphisms[J].Asian J Math,1999,3:1-16.
[9] FANG H,LAI M J,MA X N.On a class of fully nonlinear ow in Kahler geometry[J].J Reine Angew Math,2011,653:189-220.
[10] GUAN B,LI Q.The Dirichlet problem for a complex Monge-Ampère type equation on Hermitian manifolds[J].Adv Math,2013,246:351-367.
[11] GUAN B,SUN W.On a class of fully nonlinear elliptic equations on Hermitian manifolds[J].Calc Var Partial Dierential Equations,2015,54:901-916.
[12] SUN W.On a class of fully nonlinear elliptic equations on closed Hermitian manifolds[J].J Geom Anal,2016,26:2459-2473.
[13] SONG J,WEINKOVE B.On the convergence and singularities of the J-flow with applications to the Mabuchi energy[J].Comm Pure Appl Math,2008,61:210-229.
[14] KOMZSIK L.Implicit computational solution of generalized quadratic eigenvalue problems[J].Elsevier Science Publishers B V,2001,37(10):799-810.
[15] SMITH H A,SINGH R K,SORENSEN D C.Formulation and solution of the non-linear,damped eigenvalue problem for skeletal systems[J].International Journal for Numerical Methods in Engineering,1995,38(18):3071-3085.
[16] GUAN B.The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds[EB/OL].[2017-03-12].https:∥arxiv.org/abs/1403.2133.
[17] LI Y Y.Some existence results of fully nonlinear elliptic equations of Monge-Ampère type[J].Comm Pure Appl Math,1990,43:233-271.
[18] URBAS J.Hessian equations on compact Riemannian manifolds[C]∥Nonlinear Problems in Math-ematical Physics and Related Topics Ⅱ.New York:Kluwer/Plenum,2002:367-377.
[19] BLOCKIV.A gradient estimate in the Calabi-Yau theorem[J].Math Ann,2009,344:317-327.
[20] HANANI A.Equations du type de Monge-Ampère sur les varietes hermitiennes compactes[J].J Funct Anal,1996,137:49-75.
[21] HOU Z.Complex Hessian equation on Kahler manifold[J].Int Math Res Not,2009,16:3098-3111.
[22] SZEKELYHIDI G.Fully non-linear elliptic equations on compact Hermitian manifolds[EB/OL].[2017-03-12].https:∥arxiv.org/abs/1501.02762.

备注/Memo

备注/Memo:
收稿日期:2017-05-08 录用日期:2017-12-12
Email:rirongyuan@stu.xmu.edu.cn
引文格式:袁日荣.带梯度项的广义复Monge-Ampère型方程的梯度估计[J].厦门大学学报(自然科学版),2018,57(3):369-372.
Citation:YUAN R R.Gradient estimates for generalized complex Monge-Ampère type equations with gradient terms[J].J Xiamen Univ Nat Sci,2018,57(3):369-372.(in Chinese)
更新日期/Last Update: 1900-01-01