|本期目录/Table of Contents|

[1]陈占飞,郑 智,宋宇宁,等.聚3,4-乙烯二氧噻吩在海洋微生物燃料电池阳极改性中的应用[J].厦门大学学报(自然科学版),2018,57(03):323-328.[doi:10.6043/j.issn.0438-0479.201708013]
 CHEN Zhanfei,ZHENG Zhi,SONG Yuning,et al.Application of Poly 3,4-ethylenedioxythiophene in Anode Modification of Marine Microbial Fuel Cells[J].Journal of Xiamen University(Natural Science),2018,57(03):323-328.[doi:10.6043/j.issn.0438-0479.201708013]
点击复制

聚3,4-乙烯二氧噻吩在海洋微生物燃料电池阳极改性中的应用(PDF)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年03期
页码:
323-328
栏目:
研究论文
出版日期:
2018-05-31

文章信息/Info

Title:
Application of Poly 3,4-ethylenedioxythiophene in Anode Modification of Marine Microbial Fuel Cells
文章编号:
0438-0479(2018)03-0323-06
作者:
陈占飞郑 智宋宇宁刘红豆王 珊徐方成*
厦门大学化学化工学院,福建 厦门 361005
Author(s):
CHEN ZhanfeiZHENG ZhiSONG YuningLIU HongdouWANG ShanXU Fangcheng*
College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
关键词:
聚34-乙烯二氧噻吩 微生物燃料电池 Shewanella sp. S2 海洋产电菌 导电聚合物
Keywords:
poly(34-ethylenedioxythiophene)(PEDOT) microbial fuel cell(MFC) Shewanella sp. S2 marine exoelectrogens conductive polymer
分类号:
O 635.2
DOI:
10.6043/j.issn.0438-0479.201708013
文献标志码:
A
摘要:
采用聚3,4-乙烯二氧噻吩(PEDOT)修饰石墨阳极,采用恒电位仪、扫描电子显微镜、能谱仪对其进行表征,并探讨其在U型微生物燃料电池(MFC)中影响海洋产电菌Shewanella sp. S2产电的机制.结果表明:电化学法合成的PEDOT呈片状覆盖在石墨表面,并带有一些颗粒状凸起(直径约200 nm).PEDOT修饰后,MFC表观内阻从471 Ω下降到390 Ω; 稳定期的电流密度(173.6 mA/m2)是未修饰MFC(74.4 mA/m2)的2.33倍.扫描电镜结果显示,PEDOT修饰显著提高了产电菌在阳极表面的吸附量.由于电极表面的粗糙度远小于细菌尺寸,推测MFC产电能力的提高主要是由于PEDOT与产电菌间的电荷相互作用而不是电极表面粗糙度.
Abstract:
In this study,poly(3,4-ethylenedioxythiophene)(PEDOT)was used to modify the graphite anode.The modified graphite anode was characterized with potentiostat,scanning electron microscope(SEM),energy disperse spectroscopy(EDS)and its effects on current generation of U-shaped microbial fuel cells(MFCs)were evaluated.The results showed that PEDOT was electrochemically polymerized and covered mainly in a sheet-like form with 200 nm-size dots on the anode surface.Polarization tests of the MFCs showed that,compared with the unmodified anode,apparent internal resistance declined from 471 Ω to 390 Ω.Consequently,the current density at the plateau stage was enhanced greatly(by 2.33 times),i.e.,173.6 mA/m2 for PEDOT modified type vs. 74.4 mA/m2 for the unmodified type.SEM analysis showed that there were more Shewanella sp. S2 cells adsorbed on the anode surface of the PEDOT modified type than that of the unmodified type.The overall results confirmed that it was mainly the charge interaction between PEDOT and exoelectrogens rather than the roughness improving marine MFC current production,because the roughness of both modified and unmodified anodes were much smaller than the size of S2 cells.

参考文献/References:

[1] LOGAN B E.Microbial fuel cells[M].Hoboken,New Jersey:John Wiley & Sons,Inc.,2008:4-6.
[2] LOVLEY D R.Microbial fuel cells:novel microbial physiologies and engineering approaches[J].Current Opinion in Biotechnology,2006,17(3):327-332.
[3] FRAIWAN A,CALL D F,CHOI S.Bacterial growth and respiration in laminar flow microbial fuel cells[J].Journal of Renewable and Sustainable Energy,2014,6(2):023125.
[4] LOGAN B E.Scaling up microbial fuel cells and other bioelectrochemical systems[J].Applied Microbiology and Biotechnology,2010,85(6):1665-1671.
[5] FOLEY J M,ROZENDAL R A,HERTLE C K,et al.Life cycle assessment of high-rate anaerobic treatment,microbial fuel cells,and microbial electrolysis cells[J].Environmental Science & Technology,2010,44(9):3629-3637.
[6] ATES M,KARAZEHIR T,SARAC S A.Conducting polymers and their applications[J].Current Physical Che-mistry,2012,2(3):224-240.
[7] LIU X,WU W G,GU Z Z.Poly(3,4-ethylenedioxythiophene)promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell[J].Journal of Power Sources,2015,277:110-115.
[8] WANG Y,ZHAO C E,SUN D,et al.A graphene/poly(3,4-ethylenedioxythiophene)hybrid as an anode for high-performance microbial fuel cells[J].ChemPlusChem,2013,78(8):823-829.
[9] KANG Y L,IBRAHIM S,PICHIAH S.Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene)with different structural configuration of anode for microbial fuel cell application[J].Bioresource Technology,2015,189:364-369.
[10] YONG Y C,DONG X C,CHAN-PARK M B,et al.Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-perfor-mance microbial fuel cells[J].ACS Nano,2012,6(3):2394-2400.
[11] 王彪,黄杰勋,章晓波,等.一株海洋产电菌Shewanella sp. S2的筛选和产电分析[J].微生物学通报,2010,37(3):342-348.
[12] XU F,MOU Z,GENG J,et al.Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from marine sediment[J].Chemosphere,2016,158:30-36.
[13] PéREZ-RODRíGUEZ P,OVANDO-MEDINA V M,MARTíNEZ-AMADOR S Y,et al.Bioanode of polyurethane/graphite/polypyrrole composite in microbial fuel cells[J].Biotechnology and Bioprocess Engineering,2016,21(2):305-313.
[14] LU Z,GIRGUIS P,LIANG P,et al.Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy [J].Bioprocess and Biosystems Engineering,2015,38(7):1325-1333.
[15] BARON D,LABELLE E,COURSOLLE D,et al.Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1[J].Journal of Biological Chemistry,2009,284(42):28865-28873.
[16] CYSEWSKA K,KARCZEWSKI J,JASINSKI P.Influence of electropolymerization conditions on the morphological and electrical properties of PEDOT film[J].Electrochimica Acta,2015,176:156-161.

备注/Memo

备注/Memo:
收稿日期:2017-08-10 录用日期:2017-12-01
基金项目:国家自然科学基金(21273181); 中国大洋重点项目(DY135-B-04,DY125-15-T-08); 海洋地质国家重点实验室开放基金(MGK1207); 清华大学环境模拟与污染控制国家重点实验室开放基金(11K08ESPCT)
*通信作者:fcxu@xmu.edu.cn
引文格式:陈占飞,郑智,宋宇宁,等.聚3,4-乙烯二氧噻吩在海洋微生物燃料电池阳极改性中的应用[J].厦门大学学报(自然科学版),2018,57(3):323-328.
Citation:CHEN Z F,ZHENG Z,SONG Y N,et al.Application of poly 3,4-ethylenedioxythiophene in anode modification of marine microbial fuel cells[J].J Xiamen Univ Nat Sci,2018,57(3):323-328.(in Chinese)
更新日期/Last Update: 2018-05-31