|本期目录/Table of Contents|

[1]章宇栋,黄惠祥,童 峰*.面向多声源的压缩感知麦克风阵列的波达方向估计[J].厦门大学学报(自然科学版),2018,57(02):291-296.[doi:10.6043/j.issn.0438-0479.201710013]
 ZHANG Yudong,HUANG Huixiang,TONG Feng*.Direction of Arrival Estimation of Compressed Sensing Microphone Arrays for Multiple Sound Sources[J].Journal of Xiamen University(Natural Science),2018,57(02):291-296.[doi:10.6043/j.issn.0438-0479.201710013]
点击复制

面向多声源的压缩感知麦克风阵列的波达方向估计(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年02期
页码:
291-296
栏目:
研究简报
出版日期:
2018-03-31

文章信息/Info

Title:
Direction of Arrival Estimation of Compressed Sensing Microphone Arrays for Multiple Sound Sources
文章编号:
0438-0479(2018)02-0291-06
作者:
章宇栋黄惠祥童 峰*
厦门大学 海洋与地球学院,水声通信与海洋信息技术教育部重点实验室,福建 厦门 361102
Author(s):
ZHANG YudongHUANG HuixiangTONG Feng*
Key Laboratory of Underwater Acoustic Communication and Marine Information Technology Ministry of Education,College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102,China
关键词:
压缩感知 麦克风阵列 多声源 波达方向
Keywords:
compressed sensing(CS) microphone array multiple sound sources direction of arrival(DOA)
分类号:
TN 912.3
DOI:
10.6043/j.issn.0438-0479.201710013
文献标志码:
A
摘要:
在语音识别、说话人识别等语音交互应用领域中,麦克风阵列常常工作于多声源工作场景,因而需要更高的波达方向(DOA)估计分辨性能.压缩感知(CS)的DOA估计算法可将声源定位的问题转化成稀疏信号的重构问题,进而提高在高混响、低信噪比环境下的DOA估计性能.基于这一思想,将CS方法应用于多声源方位估计.考虑到传统的基于CS的DOA估计算法利用实测声源传输响应作为混合矩阵时,会因噪声的存在而导致多声源条件下的匹配程度下降,提出了利用基于阵列各阵元之间时延关系所生成的不同方位的声源传输响应来构造CS混合矩阵,即构造房间冲激响应CS(CRR-CS)的DOA估计算法,从而实现多声源的DOA稀疏恢复.通过实验验证了该方法优于传统方法,能更好地实现定位.
Abstract:
In applications of voice recognition,speaker recognition and other voice interaction,microphone arrays often work in multiple sound sources scenes.Therefore microphone arrays need higher resolution performance of direction of arrival(DOA)estimation.Compressed sensing-direction of arrival(CS-DOA)transforms the problems of sound source localization into the reconstruction of sparse signals,thus can improve the performance of DOA estimation in high reverberation and low SNR environment.In this paper,the compressed sensing is applied to location estimation of multiple sound sources,the traditional CS-DOA method using the mea-sured sound sources transmission response as a hybrid matrix,which will result in a decrease in the degree of matching under multiple sound sources due to the noise This article constructs the compression-sensing hybrid matrix based on the different azimuth sound sources transmission response generated by the array-element delay relation,which constructs the room impulse response(constructed room response,CRR),so as to achieves multiple sound sources DOA sparse recovery.Finally experimental results are given to verify the effectiveness of the proposed method.

参考文献/References:

[1] WAX M,KAILATH T.Optimum localization of multiple sources by passive arrays[J].IEEE Transaction on Acoustics,Speech,and Signal Processing,1983,31(5):1210-1217.
[2] GUSTAFSSON T,RAO B D,TRIVEDI M.Source localization in reverberant environments:modeling and statistical analysis[J].IEEE Transactions on Speech and Audio Processing,2003,11(6):791-803.
[3] HUANG L,WU S J,ZHANG L R.A novel MUSIC algorithm for direction-of-arrival estimation without the estimate of covariance matrix and its eigendecomposition[C]∥Proceedings of IEEE International Conference on Vehicular Technology.Stockholm:IEEE,2005:16-19.
[4] ZHAO X Y,TANG J,ZHOU L,et al.Accelerated steered response power method for sound source localization via clustering search[J].Science China Physics,Mechanics and Astronomy,2013,56(7):1329-1338.
[5] 张艳娜.基于麦克风阵列的多声源定位算法研究[D].沈阳:沈阳航空航天大学,2014:11-15
[6] 付金山,李秀坤.声矢量阵 DOA 估计的稀疏分解理论研究[J].哈尔滨工程大学学报,2013,34(3):281-286.
[7] 伍飞云,童峰.块稀疏水声信道的改进压缩感知估计[J].声学学报,2017,42(1):27-36.
[8] 金光明.基于麦克风阵列多声源定位的新方法[J].东北大学学报(自然科学版),2012,33(6):769-773.
[9] 赵小燕,周琳,吴镇扬.基于压缩感知的麦克风阵列声源定位算法[J].东南大学学报(自然科学版),2015,45(2):203-207.
[10] 李剑汶,章宇栋,童峰.一种采用旁瓣增强的麦克风阵列抗混响算法[J].厦门大学学报(自然科学版),2017,56(5):711-717.
[11] CANTLES E,ROMBERG J.Uncertainty principles:exact signal reconstruction from highly incomplete frequency information [J].IEEE Transactions on Information Theory,2006,52(2):489-509.
[12] TROPP J A,GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[13] 李芳兰,周跃海,童峰.采用可调波束形成器的GSC麦克风阵列语音增强方法[J].厦门大学学报(自然科学版),2013,52(2):186-189.
[14] GAROFOLO J S,LAMEL L F,FISHER W M,et al.TIMIT acoustic-phonetic continuous speech corpus LDC93S1.[DB/OL].[2017-06-22].https:∥catalog.ldc.upenn.edu/LDC93S1.
[15] BENESTY J,CHEN J,HUANG Y.Microphone array signal processing[M].Berlin Heidelberg:Springer Science & Business Media,2008:43-46.
[16] GANGNLY A,REDDY C,HAO Y,et al.Improving sound localization for hearing aid devices using smartphone assisted technology[C]∥2016 IEEE International Workshop on Signal Processing Systems(SiPS).Dallas:IEEE,2016:165-170.

备注/Memo

备注/Memo:
收稿日期:2017-10-17 录用日期:2017-12-26
基金项目:福建省高校产学合作项目(2015H6019); 福建省中青年教师教育科研项目(JAS170012)
*通信作者:ftong@xmu.edu.cn
引文格式:章宇栋,黄惠祥,童峰.面向多声源的压缩感知麦克风阵列的波达方向估计[J].厦门大学学报(自然科学版),2018,57(2):291-296.
Citation:ZHANG Y D,HUANG H X,TONG F.Direction of arrival estimation of compressed sensing microphone arrays for multiple sound sources[J].J Xiamen Univ Nat Sci,2018,57(2):291-296.(in Chinese)
更新日期/Last Update: 1900-01-01