|本期目录/Table of Contents|

[1]兰添才,陈 俊,张怡晨,等.基于水平集和最大稳定极值区域的颈椎椎体分割方法[J].厦门大学学报(自然科学版),2018,57(02):271-278.[doi:10.6043/j.issn.0438-0479.201707002]
 LAN Tiancai,CHEN Jun,ZHANG Yichen,et al.Cervical Centrum Segmentation Based on Level Set and Maximally Stable Extremal Regions[J].Journal of Xiamen University(Natural Science),2018,57(02):271-278.[doi:10.6043/j.issn.0438-0479.201707002]
点击复制

基于水平集和最大稳定极值区域的颈椎椎体分割方法(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年02期
页码:
271-278
栏目:
研究论文
出版日期:
2018-03-31

文章信息/Info

Title:
Cervical Centrum Segmentation Based on Level Set and Maximally Stable Extremal Regions
文章编号:
0438-0479(2018)02-0271-08
作者:
兰添才12陈 俊3张怡晨1李翠华1*
1.厦门大学信息科学与技术学院,福建 厦门 361005; 2.龙岩学院信息工程学院,福建 龙岩 364000; 3.龙岩市第二医院康复科,福建 龙岩 364000
Author(s):
LAN Tiancai12CHEN Jun3ZHANG Yichen1LI Cuihua1*
1.College of Information Science and Engineering,Xiamen University,Xiamen 361005,China; 2.College of Information Engineering,Longyan University,Longyan 364000,China; 3.Department of Rehabilitation,Longyan Second Hospital,Longyan 364000,China
关键词:
颈椎分割 水平集 最大稳定极值区域 最小二乘法 结构特征
Keywords:
cervical segmentation level set maximally stable extremal regions(MSER) least square method structure features
分类号:
TP 391.41
DOI:
10.6043/j.issn.0438-0479.201707002
文献标志码:
A
摘要:
颈椎椎体的分割在颈椎图像处理中起着关键的作用,是颈椎病灶确定和辅助诊断的重要基础.针对颈椎椎体边缘特征复杂的特点,提出一种基于水平集和最大稳定极值区域(maximally stable extremal regions,MSER)融合的颈椎椎体分割方法.首先采用基于图像密集度分布的图像分割方法对图像进行粗分割,自动提取颈椎区域; 然后采用改进的水平集方法提取出颈椎椎体的前缘轮廓; 根据颈椎椎体后缘的局部稳定特征,采用改进的MSER方法提取出椎体的后缘高亮区域,并结合椎体结构特征,采用最小二乘法拟合出椎体的后缘曲线; 最后融合颈椎椎体前缘轮廓与后缘曲线,从而提取完整的颈椎椎体.实验结果表明,该方法能有效地分割和提取颈椎椎体,提取的后缘曲线接近专家手工提取的结果,可以为颈椎病的临床诊断提供更客观的诊断依据.
Abstract:
Segmentation of cervical centrum plays a key part in cervical image processing,and is an important basis for confirming cervical lesions and auxiliary diagnosis.Targeting on the complexity of cervical centrum margin,this paper presents cervical centrum segmentation based on level set and combination of maximally stable extremal regions(MSER).First,rough segmentation of image will be undergone based on image distribution density to extract cervical regions automatically.Then,the improved level set is adopted to extract lip sketch of the cervical centrum.In line with partial stable features of cervical centrum trailing edge,the improved MSER is adopted to extract highlighted areas in rip of centrum.At the same time,with combination of structure features of the centrum,least square method is taken for centrum rip curve fitting.Finally,cervical centrum lip sketch and trailing curve are combined for extraction of completed cervical centrum.Experiment results show that methods used in this paper can efficiently segment and extract cervical centrum,and the result of trailing curve is similar to that by manual segmentation,and can offer more objective diagnostic basis for clinical diagnosis of cervical spondylosis.

参考文献/References:

[1] 张少群,李义凯.颈椎病研究的历史沿革[J].中国康复医学杂志,2016,31(11):1273-1276.
[2] 陈超.探讨不同的影像学方法诊断颈椎病的临床价值[J].检验医学与临床,2013,10(20):2694-2695.
[3] CHEN L L,LIN J X,XU T M,et al.The longitudinal sagittal growth changes of maxilla and mandible according to quantitative cervical vertebral maturation[J].Journal of Huazhong University of Science and Technology(Medical Sciences),2009,29(2):251-256.
[4] 蓝智聪,陈莉莉,许向阳,等.计算机辅助颈椎分析系统识别颈椎标志点的准确性和重复性探讨[J].临床口腔医学杂志,2010,26(9):526-530.
[5] 赵晓光,林久祥,王晴竹.颈椎影像计算机自动识别骨龄诊断系统的建立[EB/OL].(2013-09-03)[2017-06-17].http:∥www.paper.edu.cn/releasepaper/content/201309-17.
[6] 梁礼明,黄朝林,石霏,等.融合形状先验的水平集眼底图像血管分割[J/OL].计算机学报,2016.(2016-11-25).[2017-06-17].http:∥www.cnki.net/kcms/detail/11.1826.TP.20161125.2311.002.html.
[7] JEFFEE A I B,PAHL C,ABDULJABBAR H N,et al.Cervical segmentation in ultrasound image using level-set algorithm[C]∥Advances in Biomedicine and Health Science.Johor:[s.n.],2013:25-30.
[8] LU Z,CARNEIRO G,BRADLEY A P.An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells[J].IEEE Transactions on Image Processing,2015,24(4):1261-1272.
[9] WANG J K,CHENG Y Z,GUO C Y,et al.Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images[J].International Journal for Computer Assisted Radiology and Surgery,2016,11(5):817-826.
[10] CHENG Y Z,HU X,WANG J,et al.Accurate vessel segmentation with constrained B-Snake[J].IEEE Transactions on Image Processing,2015,24(8):2440-2455.
[11] 王阳萍,杜晓刚,赵庶旭,等.医学影像图像处理[M].北京:清华大学出版社,2012:69-109.
[12] MIKOLAJCZYK K,TUYTELAARS T,SCHMID C,et al.A comparison of affine region detectors[J].International Journal of Computer Vision,2005,65(1/2):43-72.
[13] 闻莎,游志胜.性能优化的同态滤波空域算法[J].计算机应用研究,2000,17(3):62-65.
[14] CHAN T F,VESE L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
[15] CASELLES V,KIMMEL R,SAPIRO G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
[16] TAO W B,TAI X C.Multiple piecewise constant with geodesic active contours(MPC-GAC)framework for interactive image segmentation using graph cuts optimization[J].Image and Vision Computing,2011,29(8):499-508.
[17] MIKOLAJCZYK K,TUYTELAARS T,SCHMID C,et al.A comparision of affineregion detectors[J].International Journal of Computer Vision,2005,65(1):43-72.
[18] MATAS J,CHUM O,URBAN M,et al.Robust wide baseline stereo from maximally stable extremal regions [C]∥Proceedings of the British Machine Vision Conference.Cardiff:[s.n.],2002:384-393.
[19] 王涛,周理乾,孙孟锟,等.6种颈椎曲度测量方法的可信度及可重复性比较[J].中国脊柱脊髓杂志,2015,25(4):323-327.
[20] 陈银海,姚红华,杨忠.颈椎曲度的X线测量在颈椎病康复评定中的应用价值[J].中国康复,2007,22(3):156-158.

备注/Memo

备注/Memo:
收稿日期:2017-07-06 录用日期:2018-01-17
基金项目:国家自然科学基金(61373077); 福建省自然科学基金(2015J01587); 福建省科技厅资助高校项目(JK2010056); 福建省教育厅项目(JB10160)
*通信作者:chli@xmu.edu.cn
引文格式:兰添才,陈俊,张怡晨,等.基于水平集和最大稳定极值区域的颈椎椎体分割方法[J].厦门大学学报(自然科学版),2018,57(2):271-278.
Citation:LAN T C,CHEN J,ZHANG Y C,et al.Cervical centrum segmentation based on level set and maximally stable extremal regions[J].J Xiamen Univ Nat Sci,2018,57(2):271-278.(in Chinese)
更新日期/Last Update: 1900-01-01