|本期目录/Table of Contents|

[1]周燕茹*,曾建平,邵振华,等.基于降维动态观测器的一类多项式系统的非线性H∞控制[J].厦门大学学报(自然科学版),2018,57(02):251-257.[doi:10.6043/j.issn.0438-0479.201601040]
 ZHOU Yanru*,ZENG Jianping,SHAO Zhenhua,et al.Nonlinear H∞ Control for a Class of Polynomial Systems Based on Reduced-order Dynamic Observer[J].Journal of Xiamen University(Natural Science),2018,57(02):251-257.[doi:10.6043/j.issn.0438-0479.201601040]
点击复制

基于降维动态观测器的一类多项式系统的非线性H控制(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年02期
页码:
251-257
栏目:
研究论文
出版日期:
2018-03-31

文章信息/Info

Title:
Nonlinear H Control for a Class of Polynomial Systems Based on Reduced-order Dynamic Observer
文章编号:
0438-0479(2018)02-0251-07
作者:
周燕茹1*曾建平2邵振华1黄程恺1
1.厦门理工学院电气工程与自动化学院,福建 厦门 361024; 2.厦门大学信息科学与技术学院,福建 厦门 361005
Author(s):
ZHOU Yanru1*ZENG Jianping2SHAO Zhenhua1HUANG Chengkai1
1.School of Electrical Engineering and Automation,Xiamen University of Technology,Xiamen 361024,China; 2.School of Information Science and Engineering,Xiamen University,Xiamen 361024,China
关键词:
非线性H控制 多项式系统 动态观测器 外部干扰
Keywords:
nonlinear H control polynomial systems dynamic observer external disturbances
分类号:
TP 13
DOI:
10.6043/j.issn.0438-0479.201601040
文献标志码:
A
摘要:
针对一类存在外部扰动的多项式系统,研究了基于动态观测器的非线性H控制设计问题.根据该类系统的结构特征,对线性时不变系统中动态观测器形式进行推广,构造出相应的非线性降维动态观测器.借鉴变量替换法研究思路,采用Lyapunov稳定性结合多项式平方和(SOS)凸优化理论,推导出该非线性H控制问题的可解性条件和控制器构造方法.以质量弹簧阻尼系统为数值仿真实例,验证了所得结论的可行性和有效性.
Abstract:
This paper focuses on the observer-based nonlinear H control problem for a class of polynomial systems with external disturbances.Structural features of such systems guarantee the extension from the dynamic observer in linear time-in-variant systems to the corresponding nonlinear reduced-order dynamic observer.Furthermore,on the basis of variable substitution simplified solution,the feasibility conditions of the nonlinear H control problem and the approach of constructing the controller are obtained based on the Lyapunov stability and sum of squares(SOS)convex programming theories.Finally,simulation results of the mass-spring-damper system are given to illustrate the feasibility and effectiveness of the proposed method.

参考文献/References:

[1] PARK J K.The concept and design of dynamic state estimation[C]∥Proceedings of the American Control Conference.San Diego:IEEE,1999:2412-2416.
[2] BOYD S,GHAOUI L E,FERON E,et al.Linear matrix inequalities in system and control theory[M].Philadelphia:Society for Industrial and Applied Mathematics,1994:111-118.
[3] PARK J K,SHIN D R,CHUNG T M.Dynamic observers for linear time-invariant sys-tems[J].Automatica,2002,38(6):1083-1087.
[4] PERTEW A M,MARQUEZ H J,ZHAO Q.H dynamic observer design with application in fault diagnosis[C]∥Proceeding of the 44th IEEE Conference on Decision and Control.Seville:IEEE,2005:3803-3808.
[5] PERTEW A M,MARQUEZ H J,ZHAO Q.H observer design for Lipschitz nonlinear systems [J].IEEE Transactions on Automatic Control,2006,51(7):1211-1216.
[6] GOLABI A,BEHESHTI M,ASEMANI M H.H robust fuzzy dynamic observer-based controller for uncertain Takagi-Sugeno fuzzy systems[J].IET Control Theory and Applications,2012,6(10):1434-1444.
[7] WANG Z H,LI L L,ZHANG Y,et al.Dynamic observer design for linear descriptor systems[C]∥Proceedings of the 33rd Chinese Control Conference.Nanjing:Shanghai Scientific & Technical Publishers,2014:3036-3040.
[8] PRAJNA S,PAPACHRISTODOULOU A,WU F.Nonlinear control synthesis by sum of squares optimization:a Lyapunov-based approach[C]∥Proceedings of the 5th Asian Control Conference.Melbourne:IEEE,2004:157-165.
[9] 周燕茹,黄文超,曾建平.挠性卫星姿态非线性局部镇定控制[J].控制理论与应用,2014,31(3):279-284.
[10] XU J,XIE L H,WANG Y Y.Simultaneous stabilization and robust control of polynomial nonlinear systems using SOS techniques[J].IEEE Transactions on Automatic Control,2009,54(8):1892-1897.
[11] HUANG W C,SUN H F,ZENG J P.Robust control synthesis of polynomial nonlinear systems using sum of squares technique[J].Acta Automatica Sinica,2013,39(6):799-805.
[12] ZHENG Q,WU F.Nonlinear output feedback H control for polynomial nonlinear systems[C]∥Procee-dings of the 2008 American Control Conference.Washington:IEEE,2008:1196-1201.
[13] LAM H K.Chaotic synchronisation using output/full state-feedback polynomial controller [J].IET Control Theory and Applications,2010,4(11):2285-2292.
[14] LU W M,DOYLE J C.H Control of nonlinear systems via output feedback:controller parameterization[J].IEEE Transactions on Automatic Control,1994,39(12):2517-2521.
[15] PRAJNA S,PAPACHRISTODOULOU A,SEILER P,et al.SOSTOOLS:sum of squares optimization toolbox for matlab:user’s guide version 2.0[EB/OL].[2013-01-31].http:∥www.cds.caltech.edu/sostool/.
[16] GAHINET P,APKARIAN P.A linear matrix inequality approach to Hcontrol[J].International Journal of Robust and Nonlinear Control,1994,4(4):421-448.

备注/Memo

备注/Memo:
收稿日期:2017-04-26 录用日期:2017-09-27
基金项目:国家自然科学基金(61374037, 61673325); 福建省自然科学基金(2015J01650,2016J01267); 福建省教育厅中青年教师教育科研项目(JAT170426); 厦门理工学院高层次人才项目(YKJ16024R)
*通信作者:zhouyr1986@126.com
引文格式:周燕茹,曾建平,邵振华,等.基于降维动态观测器的一类多项式系统的非线性H控制[J].厦门大学学报(自然科学版),2018,57(2):251-257.
Citation:ZHOU Y R,ZENG J P,SHAO Z H,et al.Nonlinear H control for a class of polynomial systems based on reduced-order dynamic observer[J].J Xiamen Univ Nat Sci,2018,57(2):251-257.(in Chinese)
更新日期/Last Update: 1900-01-01