|本期目录/Table of Contents|

[1]鲁旭斋,李姝慧,湛新星,等.N-苯基富勒烯吡咯烷的合成及其光伏性能[J].厦门大学学报(自然科学版),2018,57(02):164-170.[doi:10.6043/j.issn.0438-0479.201706001]
 LU Xuzhai,LI Shuhui,ZHAN Xinxing,et al.Preparation and Photovoltaic Performance of N-phenyl Fulleropyrrolidine[J].Journal of Xiamen University(Natural Science),2018,57(02):164-170.[doi:10.6043/j.issn.0438-0479.201706001]
点击复制

N-苯基富勒烯吡咯烷的合成及其光伏性能(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年02期
页码:
164-170
栏目:
研究论文
出版日期:
2018-03-31

文章信息/Info

Title:
Preparation and Photovoltaic Performance of N-phenyl Fulleropyrrolidine
文章编号:
0438-0479(2018)02-0164-07
作者:
鲁旭斋1李姝慧1湛新星1王 坦1邓林龙2*谢素原1黄荣彬1郑兰荪1
1.厦门大学 化学化工学院,固体表面物理化学国家重点实验室,2.厦门大学萨本栋微米纳米科学技术研究院,福建 厦门 361005
Author(s):
LU Xuzhai1LI Shuhui1ZHAN Xinxing1WANG Tan1DENG Linlong2*XIE Suyuan1HUANG Rongbin1ZHENG Lansun1
1.State Key Laboratory of Physical Chemistry of Solid Surfaces,College of Chemistry and Chemical Engineering,Xiamen University,2.Pen-Tung Sah Institute of Micro-Nano Science and Technology,Xiamen University,Xiamen 361005,China
关键词:
富勒烯吡咯烷 聚合物太阳能电池 光伏性能 电子受体
Keywords:
fulleropyrrolidine polymer solar cells photovoltaic performance electron acceptor
分类号:
O 649.5; O 613.7
DOI:
10.6043/j.issn.0438-0479.201706001
文献标志码:
A
摘要:
采用Prato反应合成了一系列N-苯基取代的富勒烯吡咯烷衍生物并将其作为电子受体材料应用于聚合物太阳能电池.实验结果表明,N-苯基-2-(3-甲氧基苯基)[60]富勒烯吡咯烷(FP2)和N-苯基-2-(4-甲氧基苯基)[60]富勒烯吡咯烷(FP3)可以通过一锅法合成,其合成过程简单,成本较低且产率较高.以聚(3-己基噻吩)(P3HT)为给体,FP2和FP3为受体的聚合物太阳能电池的能量转换效率分别为3.27%和3.30%.该效率接近在相同实验条件下的P3HT:[6,6]-苯基-C61-丁酸甲酯(PC61BM)器件以及文献报道的P3HT:PC61BM器件的效率.
Abstract:
A series of fulleropyrrolidine derivatives with N-phenyl group were prepared via Prato reaction and employed as acceptors for polymer solar cells.It was found that N-phenyl-2-(3-methoxyphenyl)[60] fulleropyrrolidine(FP2)and N-phenyl-2-(4-methoxyphenyl)[60] fulleropyrrolidine(FP3)had been successfully synthesized via a facile,cost-effective one-pot reaction with high yield.FP2 and FP3 worked as good electron acceptors with poly(3-hexylthiophene)(P3HT)as donor,and power conversion efficiencies of 3.27% and 3.30% were obtained,respectively.These efficiencies are comparable to that of the P3HT:[6,6]-phenyl-C61-butyric acid methyl ester(PC61BM)device under the same experimental conditions and that of the reference P3HT:PC61BM device reported in the literature.

参考文献/References:

[1] BRABEC C J.Organic photovoltaics:technology and market[J].Sol Energy Mater Sol Cells,2004,83(2/3):273-292.
[2] ETXEBARRIA I,AJURIA J,PACIOS R.Solution-processable polymeric solar cells:a review on materials,strategies and cell architectures to overcome 10%[J].Org Electron,2015,19:34-60.
[3] SUN Y Y,ZHANG W H,CHI H J,et al.Recent development of graphene materials applied in polymer solar cell[J].Renewable Sustainable Energy Reviews,2015,43:973-980.
[4] ZHAO W C,LI S S,ZHANG S Q,et al.Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency[J].Adv Mater,2017,29(2):1604059.
[5] HE Y J,LI Y F.Fullerene derivative acceptors for high performance polymer solar cells[J].Phys Chem Chem Phys,2011,13(6):1970-1983.
[6] YU G,GAO J,HUMMELEN J C,et al.Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J].Science,1995,270(5243):1789-1791.
[7] WIENK M M,KROON J M,VERHEES W J,et al.Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells[J].Angew Chem Int Ed,2003,42(29):3371-3375.
[8] HUMMELEN J C,KNIGHT B W,LEPEQ F,et al.Preparation and characterization of fulleroid and methanoful1lerene derivatives[J].J Org Chem,1995,60(3):532-538.
[9] MAGGINI M,SCORRANO G,PRATO M.Addition of azomethine ylides to C60:synthesis,characterization,and functionalization of fullerene pyrrolidines[J].J Am Chem Soc,1993,115(21):9798-9799.
[10] DELGADO J L,MARTIN N,DE LA CRUZ P,et al.Pyrazolinofullerenes:a less known type of highly versatile fullerene derivatives[J].Chem Soc Rev,2011,40(11):5232-5241.
[11] PRATO M,MAGGINI M.Fulleropyrrolidines:a family of full-fledged fullerene derivatives[J].Acc Chem Res,1998,31(9):519-526.
[12] TAGMATARCHIS N,PRATO M.The addition of azomethine ylides to [60] fullerene leading to fulleropyrrolidines[J].Synlett,2003(6):768-779.
[13] MATEO-ALONSO A,ILIOPOULOS K,COURIS S,et al.Efficient modulation of the third order nonlinear optical properties of fullerene derivatives[J].J Am Chem Soc,2008,130(5):1534-1535.
[14] GOURNIS D,JANKOVIC L,MACCALLINI E,et al.Clay-fulleropyrrolidine nanocomposites[J].J Am Chem Soc,2006,128(18):6154-6163.
[15] KHARISOV B I,KHARISSOVA O V,GOMEZ M J,et al.Recent advances in the synthesis,characterization,and applications of fulleropyrrolidines[J].Ind Eng Chem Res,2009,48(2):545-571.
[16] ZENG H P,WANG T,SANDANAYAKA A S,et al.Photoinduced charge separation and charge recombination in [60]fullerene-ethylcarbazole and [60]fullerene-triphenylamines in polar solvents[J].J Phys Chem A,2005,109(21):4713-4720.
[17] SEGURA J L,PRIEGO E M,MARTIN N,et al.A new photoactive and highly soluble C60-TTF-C60 dimer:charge separation and recombination[J].Org Lett,2000,2(25):4021-4024.
[18] POSSAMAI G,MARCUZ S,MAGGINI M,et al.Synthesis,photophysics and photoresponse of fullerene-based azoaromatic dyads[J].Chemistry,2005,11(19):5765-5776.
[19] BLANCO G D,HILTUNEN A J,LIM G N,et al.Syntheses,charge separation,and inverted bulk heterojunction solar cell application of phenothiazine-fullerene dyads[J].ACS Appl Mater Interfaces,2016,8(13):8481-8490.
[20] GANESAMOORTHY R,SATHIYAN G,SAKTHIVEL P.Review:fullerene based acceptors for efficient bulk heterojunction organic solar cell applications[J].Sol Energy Mater Sol Cells,2017,161:102-148.
[21] MATSUMOTO K,HASHIMOTO K,KAMO M,et al.Design of fulleropyrrolidine derivatives as an acceptor molecule in a thin layer organic solar cell[J].J Mater Chem,2010,20(41):9226-9230.
[22] ZHANG X N,SUN L,ZHENG W,et al.The preparation and properties of bulk-heterojunction organic solar cells with indole-containing fulleropyrrolidine derivatives as acceptors[J].Tetrahedron,2013,69(46):9544-9550.
[23] NICOLAI H T,WETZELAER G A H,KUIK M,et al.Space-charge-limited hole current in poly(9,9-dioctylfluorene)diodes[J].Appl Phys Lett,2010,96(17):172107.
[24] LENES M,MORANA M,BRABEC C J,et al.Recombination-limited photocurrents in low bandgap polymer/fullerene solar cells[J].Adv Funct Mater,2009,19(7):1106-1111.
[25] MIKROYANNIDIS J A,KABANAKIS A N,SHARMA S S,et al.A simple and effective modification of PCBM for use as an electron acceptor in efficient bulk heterojunction solar cell[J].Adv Funct Mater,2011,21(4):746-755.
[26] KORDATOS K,ROS T D,PRATO M,et al.Absorption spectra of the mono-adduct and eight bis-adduct regio-isomers of pyrrolidine derivatives of C60[J].Chem Phys,2003,293(2):263-280.
[27] SUN Q J,WANG H Q,YANG C H,et al.Synthesis and electroluminescence of novel copolymers containing crown ether spacers[J].J Mater Chem,2003,13(4):800-806.
[28] ROSS R B,CARDONA C M,GULDI D M,et al.Endohedral fullerenes for organic photovoltaic devices[J].Nat Mater,2009,8(3):208-212.
[29] HE Y,CHEN H Y,HOU J,et al.Indene-C60 bisadduct:a new acceptor for high-performance polymer solar cells[J].J Am Chem Soc,2010,132(4):1377-1382.
[30] HE Y,ZHAO G,PENG B,et al.High-yield synthesis and electrochemical and photovoltaic properties of indene-C70 bisadduct[J].Adv Funct Mater,2010,20(19):3383-3389.
[31] LEE J K,FUJIDA K,TSUTSUI T,et al.Synthesis and photovoltaic properties of soluble fulleropyrrolidine derivatives for organic solar cells[J].Sol Energy Mater Sol Cells,2007,91(10):892-896.
[32] MI D,KIM H U,KIM J H,et al.Synthesis of a soluble fulleropyrrolidine derivative for use as an electron acceptor in bulk-heterojunction polymer solar cells[J].Syn Met,2012,162(5):483-489.

备注/Memo

备注/Memo:
收稿日期:2017-06-12 录用日期:2017-08-16
基金项目:国家重点基础研究发展计划(973计划)(2014CB845601); 国家自然科学基金(51502252,51572231); 福建省中青年教师教育科研项目(JA15006)
*通信作者:denglinlong@xmu.edu.cn
引文格式:鲁旭斋,李姝慧,湛新星,等.N-苯基富勒烯吡咯烷的合成及其光伏性能[J].厦门大学学报(自然科学版),2018,57(2):164-170.
Citation:LU X Z,LI S H,ZHAN X X,et al.Preparation and photovoltaic performance of N-phenyl fulleropyrrolidine[J].J Xiamen Univ Nat Sci,2018,57(2):164-170.(in Chinese)
更新日期/Last Update: 1900-01-01