|本期目录/Table of Contents|

[1]林新武,林献武*,兰维瑶.物体在不可压缩流场中所受的流体动力表达式[J].厦门大学学报(自然科学版),2018,57(01):124-129.[doi:10.6043/j.issn.0438-0479.201705031]
 LIN Xinwu,LIN Xianwu*,LAN Weiyao.On the Fluid Dynamic Force of a Solid Body Moving in the Incompressible Flow[J].Journal of Xiamen University(Natural Science),2018,57(01):124-129.[doi:10.6043/j.issn.0438-0479.201705031]
点击复制

物体在不可压缩流场中所受的流体动力表达式(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年01期
页码:
124-129
栏目:
研究论文
出版日期:
2018-01-26

文章信息/Info

Title:
On the Fluid Dynamic Force of a Solid Body Moving in the Incompressible Flow
文章编号:
0438-0479(2018)01-0124-06
作者:
林新武林献武*兰维瑶
厦门大学航空航天学院,福建 厦门 361005
Author(s):
LIN XinwuLIN Xianwu*LAN Weiyao
School of Aerospace Engineering,Xiamen University,Xiamen 361005,China
关键词:
飞艇 非定常气动力 不可压缩流场 涡动力学
Keywords:
airship unsteady state hydrodynamic force incompressible flow field vortical dynamics
分类号:
O 355
DOI:
10.6043/j.issn.0438-0479.201705031
文献标志码:
A
摘要:
为统一有粘和无粘不可压缩流场中的流体动力表达式,在允许滑移边界条件的情况下,重新推导了不可压缩流场中运动体的流体动力表达式.根据流场动量定理将流体动力表示为无穷远边界上流场应力的积分与流场动量变化率积分的代数和; 再利用导数矩转换(DMT)公式分别将这两个积分结果进行分解,并根据速度在无穷远处的渐近特性将这些分解结果组合并简化成流场第一涡量矩的积分及流场在物面边界上切向速度矩的积分之和,得到了新的流体动力表达式.理论分析和算例证明了这种新的流体动力表达式在无粘流的情况下收敛于Lamb的流体动力表达式,而在有粘流的情况下与涡动力学理论一致.
Abstract:
For unifying the expression of the fluid dynamic force in the viscous and inviscid incompressible flow field,the expression is re-deduced with the slip boundary condition is permitted.The fluid dynamic force is expressed as the algebraic sum of the integral of the flow stress on the infinity boundary and the integral of the change rate of the flow field momentum based on the momentum theorem.Then,the derivative moment transformation(DMT)is adopted to decompose these two integrals,then decomposition results are combined and simplified into the sum of the integral of the first vortex moment in the flow field and the integral of the tangent velocity moment on the solid surface based on the asymptotic property of the velocity at infinity,and the new expression of the fluid dynamic force is obtained.Theoretical analysis and the example show that this new expression of the fluid dynamic force not only converges to the Lamb’s expression in the inviscid flow,but also is consistent with the theory of vortical dynamics in the viscous flow.

参考文献/References:

[1] KHOURY G A,GILLETT J D.Airship technology[M].2nd ed.New York:Cambridge University Press,2012:36-38.
[2] LAMB H.Hydrodynamics[M].6th ed.New York:Dover,1945:160-201,214.
[3] ALLEN H J.Estimation of the forces and moments acting on inclined bodies of high fineness ratio,RM-A9I26[R].Washington D C:NACA,1949.
[4] ALLEN H J,PERKINS E W.A study of effects of viscosity on flow over slender inclined bodies of revolution,REPORT1048[R].Washington DC:NACA,1951.
[5] HOPKINS E J.A semi-empirical method for calculating the pitching moment of bodies of revolution at low Mach numbers,RM-A51C14[R].Washington DC:NACA,1951.
[6] JONES S P,DELAURIER J D.Aerodynamic estimation techniques for aerostats and airship[J].Journal of Aircraft,2015,20(2):120-126.
[7] 基里林·阿列克桑徳拉·尼卡拉伊维奇.现代飞艇设计导论[M].吴飞,王培美,译.北京:国防工业出版社,2009:5-26.
[8] MUELLER J B,PALUSZEK M A,ZHAO Y Y.Development of an aerodynamic model and control law design for a high altitude airship[C]∥AIAA 3rd "Unmanned Unlimited" Technical Conference.Chicago:Workshop and Exhibit,2004:1-17.
[9] LI Y,NAHON M.Modeling and simulation of airship dynamics[J].Journal of Guidance Control & Dynamics,2007,30(6):1691-1700.
[10] LI Y,NAHON M,SHARF I.Airship dynamic modeling:a literature review[J].Progress in Aerospace Sciences,2011,47(3):217-239.
[11] SEBBANE Y B.Lighter than air robots[M].Netherlands:Springer,2012:34.
[12] WU J C.Theory for aerodynamic forces and moments in viscous flow[J].AIAA Journal,2012,19(4):432-441.
[13] WU J C.Elements of vorticity aerodynamics[M].Shanghai:Shanghai Jiaotong University Press,2014:12,51,78,83-89,93.
[14] WU J Z,MA H Y,ZHOU M D.Vorticity and vortex dynamics[M].Berlin Heidelberg:Springer,2006:600-603.
[15] WU J Z,MA H Y,ZHOU M D.Vortical flows[M].Berlin Heidelberg:Springer,2015:312-320.
[16] 吴子牛.空气动力学(下册)[M].北京:清华大学出版社,2008:85.
[17] 童炳刚,尹协远,朱克勤.涡运动理论[M].合肥:中国科学技术大学出版社,2009:69.
[18] 林献武,兰维瑶,李智斌,等.时变系统流场动量定理的积分形式及其在流体动力系数分析中的应用[J].应用数学和力学,2016,37(6):551-566.
[19] 易中,吴萱,周丽珍.低速空气动力学[M].北京:冶金工业出版社,2005:9.
[20] BATCHELOR G K.An introduction to fluid dynamics[M].Beijing:China Machine Press,2014:114-117.

备注/Memo

备注/Memo:
收稿日期:2017-05-15 录用日期:2017-10-30
基金项目:国家自然科学基金(11072028,61273199); 福建省自然科学基金(2016J01030)
*通信作者:linxianw@xmu.edu.cn
更新日期/Last Update: 1900-01-01