|本期目录/Table of Contents|

[1]蔡南莲*,陈 豪.具有广义Gumbel分布的两部件系统故障率的某些性质[J].厦门大学学报(自然科学版),2018,57(01):99-103.[doi:10.6043/j.issn.0438-0479.201704027]
 CAI Nanlian*,CHEN Hao.Some Hazard Rate Properties on Systems with Two Components Following Generalized Gumbel Distribution[J].Journal of Xiamen University(Natural Science),2018,57(01):99-103.[doi:10.6043/j.issn.0438-0479.201704027]
点击复制

具有广义Gumbel分布的两部件系统故障率的某些性质(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年01期
页码:
99-103
栏目:
研究论文
出版日期:
2018-01-26

文章信息/Info

Title:
Some Hazard Rate Properties on Systems with Two Components Following Generalized Gumbel Distribution
文章编号:
0438-0479(2018)01-0099-05
作者:
蔡南莲*陈 豪
集美大学理学院,福建 厦门 361021
Author(s):
CAI Nanlian*CHEN Hao
School of Sciences,Jimei University,Xiamen 361021,China
关键词:
故障率 IFR 相依 串联系统 并联系统
Keywords:
hazard rate function increasing failure rate(IFR) dependence parallel system series system
分类号:
O 211.5
DOI:
10.6043/j.issn.0438-0479.201704027
文献标志码:
A
摘要:
考虑具有广义二维Gumbel分布、同边际的两部件组成的串联系统和并联系统,研究了并联系统和串联系统的故障率的单调性质并得到它们的界; 找出了串联系统的故障率函数具有倒浴盆曲线(浴盆曲线)的充分条件; 证明了当部件是IFR(increasing failure rate)时,并联系统也是IFR.这些结果部分推广了Joo 等的相应结论.
Abstract:
We consider systems with two components following a generalized Gumbel joint distribution and a same marginal distribution.We study the monotony of their hazard rate functions and gain the bounds of them.A sufficient condition of hazard rate function on series system which has an upside-down bathtub shape(a bathtub shape)is found.It is shown that when component is increasing failure rate(IFR),so is parallel system.These results partially generalized some conclusions on Joo and Mi.

参考文献/References:

[1] MULLER A,STOYAN D.Comparison methods for stochastic models and risks[M].New York:John Wiley & Sons,2002:10.
[2] 曹晋华,程侃.可靠性数学引论[M].北京:高教出版社,2006:8.
[3] NELSEN R B.An introduction to copulas[M].New York:Springer-Verlag,1999:68.
[4] GUMBEL E J.Bivariate exponential distributions[J].J Amer Statist Assoc,1960,55:698-707.
[5] TAHMASEBI S,BEHBOODIAN J.Information properties for concomitants of order statistics in Farlie-Gumbel-Morgenstern(FGM)family[J].Communications in Statistics-Theory and Methods,2012,41(11):1954-1968.
[6] YAN R,YOU Y,LI X.On bivariate ageing propertied of exchangeable Farlie-Gumbel-Morgenstern distributions[J].Communications in Statistics-Theory and Methods,2017,46(23):11843-11853.
[7] JIANG W,YANG Z.The maximum surplus before ruin for dependent risk models through Farlie-Gumbel-Morgenstern copula[J].Scandinavian Actuarial Journal,2016(5):385-397.
[8] BOLAND P J,EL-NEWEIHI E,PROSCHAN F.Applications of the hazard rate ordering in reliability and order statistics[J].Journal of Applied Probability,1994,31:180-192.
[9] KHALEDI B E,KOCHAR S.Some new results on stochastic comparisons of parallel systems[J].Journal of Applied Probability,2000,37:1123-1128.
[10] BALAKRISHNAN N,ZHAO P.Ordering properties of order statistics from heterogeneous populations:a review with an emphasis on some recent developments[J].Probability in the Engineering and Informational Science,2013,27:403-443.
[11] JOO S,MI J.Some properties of hazard rate functions of systems with two components[J].Journal of Statistical Planning and Inference,2010,140:444-453.

备注/Memo

备注/Memo:
收稿日期:2017-04-12 录用日期:2017-12-12
基金项目:国家自然科学基金(11171278); 福建省中青年教师教育科研项目(B17154)
*通信作者:cainanlian@163.com
更新日期/Last Update: 1900-01-01