|本期目录/Table of Contents|

[1]姜恩华*,李素文,窦德召,等.压缩感知理论在BCH码译码中的应用[J].厦门大学学报(自然科学版),2017,56(04):590-594.[doi:10.6043/j.issn.0438-0479.201702036]
 JIANG Enhua,LI Suwen,DOU Dezhao,et al.Research of the BCH Code Decoding Based on the Compressive Sensing Theory[J].Journal of Xiamen University(Natural Science),2017,56(04):590-594.[doi:10.6043/j.issn.0438-0479.201702036]
点击复制

压缩感知理论在BCH码译码中的应用(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
56卷
期数:
2017年04期
页码:
590-594
栏目:
研究论文
出版日期:
2017-07-26

文章信息/Info

Title:
Research of the BCH Code Decoding Based on the Compressive Sensing Theory
文章编号:
0438-0479(2017)04-0590-05
作者:
姜恩华*李素文窦德召赵庆平
淮北师范大学物理与电子信息学院,安徽 淮北 235000
Author(s):
JIANG EnhuaLI SuwenDOU DezhaoZHAO Qingping
School of Physics and Electronic Information,Huaibei Normal University,Huaibei 235000,China
关键词:
压缩感知 基追踪BP算法 BCH码 校验矩阵 伴随式
Keywords:
compressive sensing basis pursuit BP algorithm BCH code check matrix syndrome
分类号:
TN 911.7
DOI:
10.6043/j.issn.0438-0479.201702036
文献标志码:
A
摘要:
借助无噪条件下的压缩感知理论,研究了BCH码的译码方法.将校验矩阵作为测量矩阵,伴随式作为测量信号,建立了重构差错图案的压缩感知模型.采用基追踪BP算法,重构了BCH码的差错图案,以(15,11)BCH码为例,验证了重构的差错图案的正确性.根据收码和差错图案计算出码字估值,通过误码率和码字估值成功率,比较了基追踪BP算法和Berlekamp迭代译码算法的译码效果.以BCH短码和长码为例,进行仿真实验,验证了采用压缩感知理论和基追踪BP算法实现BCH码译码的可行性和有效性.
Abstract:
By means of the compressed sensing theory under no noise condition,this paper conducts a study on the decoding method of the BCH code.The check matrix is used as the measurement matrices,and the syndrome is used as the measurement signal.Hence,the compressed sensing model of the reconstructing error pattern is built.By the basis pursuit BP algorithm,the error pattern of the BCH code is reconstructed.Taking the(15,11)BCH code as an example,we have proved that the reconstructing error pattern is correct.According to the receiving code and the reconstructing error pattern,the value of the code word is calculated.On the basis of bit error rate and the code word estimating success rate,the decoding effect of the basis pursuit BP algorithm and the Berlekamp iterative decoding algorithm are analyzed and compared.Taking the BCH short-code and long-code as an example,the simulation experiment is complete,the experiment results prove that the compressed sensing theory and the basis pursuit BP algorithm are feasible and effective in decoding the BCH code.

参考文献/References:

[1] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[2] CANDES E J,ROMBERG J,TAO T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2004,52(2):489-509.
[3] ELAD M,AHARON M.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745.
[4] BARANIUK R G.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-120,124.
[5] CANDES E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9/10):589-592.
[6] SARVOTHAM S,BARON D,BARANIUK R G.Measurements vs.bits:compressed sensing meets information theory[C]∥44th Allerton Conference Communication,Control,and Computing.Monticello:Allerton Conference on Communication Control & Computing,2006:1-5.
[7] 张景雄,阳柯,郭建中.压缩感知的信息论解译[J].武汉大学学报(信息科学版),2014,39(11):1261-1268.
[8] 董小亮,杨良龙,赵生妹,等.用信道编码构造压缩感知测量矩阵[J].信号处理,2013,29(7):809-815.
[9] 张轶,达新宇,褚振勇.低密度奇偶校验码的压缩感知重构[J].吉林大学学报(工学版),2015,45(3):985-990.
[10] BOYD S,VANDENBERGHE L.Convex optimization[M].Cambridge:Cambridge University Press,2004:609-612.
[11] WRIGHT S J.Primal-dual interior-point methods [M].Philadelphia:SIAM,1997:50-61.
[12] Foucart S,Rauhut H.A mathematical introduction to compressive sensing[M].New York:Springer,2013:61-63.
[13] ELAD,MICHAEL.Sparse and redundant representations:from theory to applications in signal and image processing[M].New York:Springer,2010:26-30.
[14] 曹雪虹,张宗橙.信息论与编码[M].北京:清华大学出版社,2009:135-158.
[15] BERLEKAMP E R.algebraic coding theory [M].New York:McGraw-Hill Book Company,1968:176-199.

备注/Memo

备注/Memo:
收稿日期:2017-02-21 录用日期:2017-04-11
基金项目:国家自然科学基金(41475017,11504121); 安徽省高校自然科学研究重点项目(KJ2016A628,KJ2016A650)
*通信作者:jianghnhb@126.com
更新日期/Last Update: 1900-01-01