|本期目录/Table of Contents|

[1]唐 琴,郑李娟,庄伟伟*,等.骆驼肠道内3种含氮杂环化合物富集培养的微生物多样性[J].厦门大学学报(自然科学版),2017,56(04):517-524.[doi:10.6043/j.issn.0438-0479.201610003]
 TANG Qin,ZHENG Lijuan,ZHUANG Weiwei*,et al.Diversity of Microbe in the Intestinal Tract of Camelus bactrianus Enriched by Three Kinds of Nitrogen Heterocyclic Compounds[J].Journal of Xiamen University(Natural Science),2017,56(04):517-524.[doi:10.6043/j.issn.0438-0479.201610003]
点击复制

骆驼肠道内3种含氮杂环化合物富集培养的微生物多样性(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
56卷
期数:
2017年04期
页码:
517-524
栏目:
研究论文
出版日期:
2017-07-26

文章信息/Info

Title:
Diversity of Microbe in the Intestinal Tract of Camelus bactrianus Enriched by Three Kinds of Nitrogen Heterocyclic Compounds
文章编号:
0438-0479(2017)04-0517-08
作者:
唐 琴1郑李娟2庄伟伟1*曾献春3*
1.新疆师范大学 生命科学学院,新疆特殊环境物种保护与调控生物学实验室,干旱区植物逆境生物学实验室,新疆 乌鲁木齐 830054; 2.乌鲁木齐市职业中等专业学校,新疆 乌鲁木齐 830001; 3.成都医学院检验医学院,四川 成都 610500
Author(s):
TANG Qin1ZHENG Lijuan2ZHUANG Weiwei1*ZENG Xianchun3*
1.Key Laboratory of Species Diversity Application and Control in Xinjiang,Key Laboratory of Plant Stress Biology in Arid Land,College of Life Sciences,Xinjiang Normal University,Urumqi 830054,China; 2.Urumqi City Occupation Technical Secondary School,Ur
关键词:
消化道 骆驼 吡啶 喹啉 吲哚 生物多样性
Keywords:
digestive tract Camelus bactrianus pyridine quinolone indole biodiversity
分类号:
Q 939.9
DOI:
10.6043/j.issn.0438-0479.201610003
文献标志码:
A
摘要:
为研究骆驼(Camelus bactrianus)体内是否存在潜在的杂环化合物降解菌,采集3头骆驼肠道内容物,分别以吡啶、喹啉和吲哚3种含氮杂环化合物作为唯一碳源和氮源进行5代富集培养.通过高通量测序技术对肠道内容物和5代富集培养微生物进行了测序分析.结果显示:骆驼肠道中经过杂环化合物(吡啶、喹啉、吲哚)富集后,变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、浮霉菌门(Planctomycetes)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)5个门类在富集的微生物中丰度最高; 骆驼肠道内吡啶富集的优势菌属于芽孢杆菌属(Bacillus)、鞘氨醇杆菌属(Sphingo-bacterium)、苍白杆菌属(Ochrobactrum)和假单胞菌属(Pseudomonas),吲哚富集的优势菌属于芽孢杆菌属、棒状杆菌属(Corynebacterium)和赖氨酸芽孢杆菌属(Lysinibacillus),而喹啉富集的优势菌以鞘氨醇杆菌属为主.骆驼肠道内容物原始样品经过吡啶、喹啉、吲哚富集5代后,优势菌群发生了较大的改变,这暗示骆驼肠道内存在具有降解吡啶、吲哚和喹啉潜能的微生物,且涉及这3种杂环化合物的降解菌群不同.
Abstract:
To explore the biodiversity of bacteria degrading potentially heterocyclic compounds in the intestinal tract of camel(Ca-melus bactrianus),we took pyridine,quinolone and indole as the only carbon and nitrogen resources,and used the five generations of enrichment culture method to cultivate the camel rumen bacteria,and used high-throughput sequencing(Illumina Miseq)to sequence the total DNA of the five generations.The results showed that Proteobacteria,Actinobacteria,Planctomycetes,Bacteroidetes and Firmicutes constituted the five categories of bacteria with the highest abundance in the intestinal tract of camel which degraded heterocyclic compounds.The dominant bacteria for degrading pyridine belong to Bacillus,Sphingobacterium,Ochrobactrum and Pseudomonas,for degrading quinolone belong to Bacillus,Corynebacterium and Lysinibacillus,and for degrading indole belong to Sphingobacterium,respectively.However,compared with the original samples in the intestinal tract,the dominant bacteria groups enriched in the cultures of five generations obviously changed.This suggest that the intestinal tract of camel has the bacteria degrading heterocyclic compounds,and the involved species are different for degradation of pyridine,quinolone and indole.

参考文献/References:

[1] 安登第,朱艳蕾,唐静,等.骆驼瘤胃耐受/降解去氢骆驼蓬碱细菌的筛选[J].微生物学报,2010(8):1001-1007.
[2] KACZENSKY P,ADIYA Y,VON WEHRDEN H,et al.Space and habitat use by wild Bactrian camels in the Transaltai Gobi of southern Mongolia[J].Biological Conservation,2014,169:311-318.
[3] CUTRIGNELLI M I,CALABR S,TUDISCO R,et al.Comparison of buffalo rumen liquor and buffalo faeces as inoculum for the in vitro gas production technique[J].Italian Journal of Animal Science,2005,4(S2):319-321.
[4] 张晓君,谢珍,马晓军.难降解污染物喹啉微生物降解的国内研究进展[J].微生物学通报,2014,41(3):476-481.
[5] 郑李娟,葛风伟,安登第,等.骆驼消化道中吡啶降解菌的分离筛选[J].厦门大学学报(自然科学版),2015,54(1):41-46.
[6] 任大军,颜克亮,刘延杰,等.白腐菌在固体培养基下对吲哚和吡啶的降解[J].环境污染与防治,2006,28(9):658-661.
[7] KOHSARI S,MASHAYEKHI M,FARAJPOUR E.Quinoline biodegradation by Bacillus Licheniformis strain CRC-75[J].Iranian Journal of Chemistry & Chemical Engineering,2010,29(2):151-158.
[8] 刘江江,陈吕军,温东辉,等.泥浆体系中吡啶的生物降解研究[J].生态环境,2006,15(6):1180-1184.
[9] 王基成,张秀霞,房苗苗,等.两株吡啶降解菌的分离与鉴定[J].生态环境,2008,17(1):117-121.
[10] RHEE S K,LEE K Y,CHUNG J C,et al.Degradation of pyridine by Nocardioides sp.strain OS4 isolated from the oxic zone of a spent shale column[J].Canadian Journal of Microbiology,1997,43(2):205-209.
[11] KIM M K,SINGLETON I,YIN C R,et al.Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1[J].Letters in Applied Microbiology,2006,42(5):495-500.
[12] MOHAMMED N,ONODERA R,OR-RASHID M M.Degradation of tryptophan and related indolic compounds by ruminal bacteria,protozoa and their mixture in vitro[J].Amino Acids,2003,24(1/2):73-80.
[13] RATTRAY R M,CRAIG A M.Molecular characterization of sheep ruminal enrichments that detoxify pyrrolizidine alkaloids by denaturing gradient gel electrophoresis and cloning[J].Microbial Ecology,2007,54(2):264-275.
[14] 张彩英,胡国良,曹华斌.反刍动物瘤胃内环境的特点及调控措施[J].中国畜牧兽医,2010(4):18-20.
[15] TAMAKI H,WRIGHT C L,LI X,et al.Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform[J].PLoS One,2011,6(9):e25263.
[16] LI X,RUI J,MAO Y,et al.Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar[J].Soil Biology and Biochemistry,2014,68:392-401.
[17] EDGAR R C,HAAS B J,CLEMENTE J C,et al.UCHIME improves sensitivity and speed of chimera detection[J].Bioinformatics,2011,27(16):2194-2200.
[18] GILBERT J A,FIELD D,SWIFT P,et al.The seasonal structure of microbial communities in the Western English Channel[J].Environmental Microbiology,2009,11(12):3132-3139.
[19] CHAO A,BUNGE J.Estimating the number of species in a stochastic abundance model[J].Biometrics,2002,58(3):531-539.
[20] 杨江科,程占冰.富营养化城市湖泊武汉东湖沉积物微生物群体结构及空间变化研究[J].微生物学报,2016,56(6):943-955.
[21] 魏太云,林含新,谢联辉.PCR-SSCP分析条件的优化[J].福建农林大学学报(自然科学版),2002,31(1):32-52.
[22] 王辉,赵春燕,李宝明,等.石油污染土壤中细菌的分离筛选[J].土壤通报,2005(2):237-239.
[23] LODHA B,BHADANE R,PATEL B,et al.Biodegradation of pyridine by an isolated bacterial consortium/strain and bio-augmentation of strain into activated sludge to enhance pyridine biodegradation[J].Biodegradation,2008,19(5):717-723.
[24] SMITH P A,MACDONALD S.Gas chromatography using a resistively heated column with mass spectrometric detection for rapid analysis of pyridine released from Bacillus spores[J].Journal of Chromatography A,2004,1036(2):249-253.
[25] MOHAN S V,SISTLA S,GURU R K,et al.Microbial degradation of pyridine using Pseudomonas sp. and isolation of plasmid responsible for degradation[J].Waste Management,2003,44(6):167-171.
[26] ZHONG Q,ZHANG H,BAI W,et al.Degradation of a-romatic compounds and degradative pathway of 4-nitrocatechol by Ochrobactrum sp. B2[J].Journal of Environmental Science and Health Part A,2007,42(14):2111-2116.
[27] 谢文娟,林爱军,杨晓进,等.一株降解芘的苍白杆菌的分离、鉴定及性能表征[J].北京化工大学学报(自然科学版),2011(3):76-80.
[28] 张静.草甘膦降解菌苍白杆菌G-1的分离鉴定及草甘膦氧化还原酶基因gox的克隆[D].南京:南京农业大学,2009:29-35.
[29] RONEN Z,BOLLAG J M.Rapid anaerobic mineralization of pyridine in a subsurface sediment inoculated with a pyridine-degrading Alcaligenes sp.[J].Applied Microbiology and Biotechnology,1992,37(2):264-269.
[30] 凌海波,张敬东,李捍东.投加高效菌种处理难降解焦化废水的实验研究[J].能源环境保护,2005,19(5):16-19.
[31] 柏耀辉,孙庆华,赵翠,等.焦化废水处理系统中喹啉降解菌的种群特征[J].中国环境科学,2008,28(5):449-455.
[32] 柏耀辉,孙庆华,唐孝炎.假单胞杆菌BC001对吡啶和喹啉的生物去除[J].北京大学学报(自然科学版),2008(2):237-242.

备注/Memo

备注/Memo:
收稿日期:2016-10-08 录用日期:2017-02-27
基金项目:国家自然科学基金(31160028); 国家自然科学基金委员会-新疆维吾尔自治区人民政府联合基金(U1503101); 四川省教育厅重点项目(17ZA0105); 成都医学院校基金项目(CYZ15-06); 新疆师范大学博士科研启动基金(XJNUBS1607); 新疆维吾尔自治区百名博士引进计划(BS2016008)
*通信作者:zww8611@sina.com(庄伟伟); zengxc2004@163.com(曾献春)
更新日期/Last Update: 1900-01-01