|本期目录/Table of Contents|

[1]张洋*,程恩.基于ε-支持向量机回归的快速公交到站时间预测[J].厦门大学学报(自然科学版),2017,56(03):442-448.[doi:10.6043/j.issn.0438-0479.201605006]
 ZHANG Yang*,CHENG En.The Bus Rapid Transit Arrival Time Prediction Based on εSVR[J].Journal of Xiamen University(Natural Science),2017,56(03):442-448.[doi:10.6043/j.issn.0438-0479.201605006]
点击复制

基于ε-支持向量机回归的快速公交到站时间预测(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
56卷
期数:
2017年03期
页码:
442-448
栏目:
研究论文
出版日期:
2017-05-24

文章信息/Info

Title:
The Bus Rapid Transit Arrival Time Prediction Based on εSVR
文章编号:
0438-0479(2017)03-0442-07
作者:
张洋12*程恩1
1.厦门大学信息科学与技术学院,福建厦门361005;2.福建信息职业技术学院,福建福州350003
Author(s):
ZHANG Yang12*CHENG En1
1.School of Information Science and Engineering,Xiamen University,Xiamen 361005,China; 2.Fujian Polytechnic of Information Technology,Fuzhou 350003,China
关键词:
支持向量机回归快速公交到站时间停靠时间车头时距
Keywords:
support vector regressionbus rapid transitarrival timestop timeheadway
分类号:
U 491.2
DOI:
10.6043/j.issn.0438-0479.201605006
文献标志码:
A
摘要:
选择ε-支持向量机回归(ε-SVR)算法预测快速公交(BRT)车辆的到站时间,以提高公共交通的准点性.分别对BRT的停靠时间和路段行驶时间建立模型.根据分析,在停靠站时间预测建模过程中选取车头时距、时段、天气等7维特征向量作为模型输入,采用人工调查法,对厦门BRT 1路的数据进行采集,归一化处理后建模.仿真结果显示该模型能够比较准确地预测厦门BRT 1路的运行路线到站时间,并验证天气因素对该线路的到站时间预测影响最大.
Abstract:
In this article,we select ε-support vector machine regression (ε-SVR) algorithm to predict the bus rapid transit (BRT) arrival time,in order to improve the public transport on time.The bus stop time and road travel time models are established.During the modeling process,seven dimensional features such as the headway,time,weather etc.,are chosen as model inputs.Artificial investigation method is used to collect the data of Xiamen BRT1.These data are normalized during the modeling process.Simulation results show that the model can accurately predict bus running time of Xiamen BRT1.Results verify that weather factors exert the highest influence on the arrival time of Xiamen BRT1.

参考文献/References:

[1] 向红艳,彭学文.公交到站时间预测研究现状与发展趋势[J].交通信息与安全,2014,32(4):57-61.
[2] YU B,LI T,KONG L,et al.Passenger boarding choice prediction at a bus hub with real-time information[J].Transportmetrica B:Transport Dynamics,2015,3(3):192- 221.
[3] BECK M J,ROCE J M.The best of times and the worst of times:a new best-worst measure of attitudes toward public transport experiences[J].Transportation Research Part A:Policy and Practice,2016,86:108-123.
[4] 牛虎.公交车辆到站时间预测研究[D].北京:北京交通大学,2010:29-71.
[5] 陈圣兵,李正茂,王晓峰.智能公交中基于条件映射的到站时间预测算法[J].计算机工程,2012,38(11):147-152.
[6] DEESHMA M,VERMA A.Travel time modeling for bus transport system in Bangalore city [J].Transportation Letters-The International Journal of Transportation Research,2015,7(1):47-56.
[7] 王茁.基于有限状态自动机的公交车到站时间预测模型[D].哈尔滨:哈尔滨工业大学,2012:26-45.
[8] BAI C,PENG Z R,LU Q C,et al.Dynamic bus travel time prediction models on road with multiple bus routes[J].Computational Intelligence and Neuroscience,2015,2015(3):432389.
[9] ZHONG S Q,HU J J,KE S,et al.A hybrid model based on support vector for bus travel-time prediction[J].Promet-traffic & Travsportation,2015,27(4):291-300.
[10] 计晓昕.公交车到站时间预测模型与实证研究[D].北京:北京交通大学,2015:28-50.
[11] 江伟华,曹秀岭,童峰.采用支持向量机的水声通信信号调制识别方法[J].厦门大学学报(自然科学版),2015,54(4):534-539.
[12] 孙德山.支持向量机分类与回归方法研究[D].长沙:中南大学,2004:82-84.
[13] CRISTIANINI N,SHAWE-TAYLOR J.支持向量机导论[M].李国正,王猛,曾华军,译.北京:电子工业出版社,2004:82-105.
[14] 李瑶.基于GPS的公交车辆到站预测模型设计与应用[D].大连:大连海事大学,2013:22-29.
[15] BRT(Bus Rapid Transit).Metro Rapid[EB/OL].[2000-10-01].http:∥brt.volpe.dot.gov/projects/losangeles.html.
[16] BOMIN B,NING Z,SHUAI L,et al.Bus service time estimation model for a curbside bus stop[J].Transportation Research Part C:Emerging Technologies,2015,57:103- 121.
[17] 杨静.多线路公交车站能力计算方法研究[D].北京:北京交通大学,2010:44-63.
[18] 高超,刘小明,杨孝宽,等.快速公交进出停靠站延误[J].北京工业大学学报,2014,40(12):1844-1847.
[19] 王晓辉.关于厦门高架BRT建设模式的思考[J].交通科技,2009(4):119-121.
[20] 毛耀宗,陈珂,江弋,等.基于粒子群算法与图形处理器加速的支持向量机参数优化方法[J].厦门大学学报(自然科学版),2013,52(5):609-612.
[21] 闫国华,朱永生.支持向量机回归的参数选择方法[J].计算机工程,2012,35(13):218-220.

备注/Memo

备注/Memo:
收稿日期:2016-05-11 录用日期:2016-10-10
基金项目:福建省教育厅中青年教师教育科研项目(JA15673)
*通信作者:zhangyang0606@126.com
引文格式:张洋,程恩.基于ε-支持向量机回归的快速公交到站时间预测[J].厦门大学学报(自然科学版),2017,56(3):442-448.
Citation:ZHANG Y,CHENG E.The bus rapid transit arrival time prediction based on the ε-SVR[J].J Xiamen Univ Nat Sci,2017,56(3):442-448.(in Chinese)
更新日期/Last Update: 1900-01-01