|本期目录/Table of Contents|

[1]杨文,龙浩*,郭长磊,等.SiO2微盘腔的湿法腐蚀工艺研究[J].厦门大学学报(自然科学版),2017,56(03):410-415.[doi:10.6043/j.issn.0438-0479.201611035]
 YANG Wen,LONG Hao*,GUO Changlei,et al.Research on Silica Microdisk by Wetetching[J].Journal of Xiamen University(Natural Science),2017,56(03):410-415.[doi:10.6043/j.issn.0438-0479.201611035]
点击复制

SiO2微盘腔的湿法腐蚀工艺研究(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
56卷
期数:
2017年03期
页码:
410-415
栏目:
研究论文
出版日期:
2017-05-24

文章信息/Info

Title:
Research on Silica Microdisk by Wetetching
文章编号:
0438-0479(2017)03-0410-06
作者:
杨文龙浩*郭长磊江水森张保平蔡志平应磊莹
厦门大学信息科学与技术学院,福建厦门361005
Author(s):
YANG WenLONG Hao*GUO ChangleiJIANG ShuisenZHANG BaopingCAI ZhipingYING Leiying
School of Information Science and Engineering,Xiamen University,Xiamen 361005,China
关键词:
回音壁KOH溶液微盘腔自由光谱范围Q值
Keywords:
whispering galleryKOHmicrodiskFSRQ factor
分类号:
TN 305.2
DOI:
10.6043/j.issn.0438-0479.201611035
文献标志码:
A
摘要:
SiO2回音壁模式(whispering gallery mode,WGM)的光学谐振腔具有品质因子Q值高、模式体积小、制作简单等优点,在腔量子电动力学、生物传感器、滤波器、非线性光学等领域具有非常好的应用前景.采用热氧化生长SiO2、光刻图形化、磁控溅射生长Cr掩膜、HF缓冲液湿法腐蚀SiO2、KOH溶液湿法腐蚀Si并去除Cr掩膜等工艺,得到了周期化、尺寸不同的SiO2微盘腔,其直径分别为20,40和60 μm.利用原子力显微镜表征微盘腔表面的粗糙度,均方根表面粗糙度仅为0.469 nm.在未经任何表面处理或者激光处理的情况下,利用连续波长可调激光器,通过光纤锥与微盘腔耦合,透射谱测量得到微盘腔的自由光谱范围(free spectrum range,FSR)为λFSR=9.6 nm,Q值约为1×104.
Abstract:
The whispering gallery mode(WGM)optical resonator enjoys advantages of high Q factor and small mode volume.The research on cavity quantum electrodynamics,biosensors,filters and nonlinear optics faces a very promising prospect.The microstructures of silica microdisk with different diameters(20,40,60 μm)were obtained by thermal oxidation,photolithography,magnetron sputtering,HF wet etching and KOH solution wet etching.The silicon backbone was octagonal pyramid,yielding smaller connection area with top silica microdisk and weaker inference on WGM in it.The surface of silica microdisk was also characterized by Atomic Force Microscopy.The surface of silica was smooth,and the Root-Mean-Square(RMS)roughness was 0.469 nm.The Q factor and FSR of 60 μm microdisk are 1×104 and 9.6 nm.

参考文献/References:

[1] GAYRAL B,GéRARD J M,LEMAITRE A,et al.High-Q wet-etched GaAs microdisks containing InAs quantum boxes[J].Appl Phys Letts,1999,75(13):1908-1911.
[2] ZHANG Z Y,YANG L,LIU V,et al.Visible submicro microdisk lasers[J].Appl Phys Letts,2007,90(11):288-290.
[3] NING Y Q,WU S L,WANG L J,et al.Microcavity effect and InGaAs/InGaAsP MQW microdisk laser[C]∥International Society for Optics and Photomics.Beijing:SPIE,1998,3547:164-167.
[4] YANG S C,WANG Y,SUN H D.Advances and prospects for whispering gallery mode microcavities[J].Adv Opt Mats,2015,3(9):1136-1162.
[5] LITTLE B E,CHU S T,PAN W,et al.Vertically coupled glass microring resonator channel dropping filters[J].IEEE Photon Technol Lett,1999,11(2):215-217.
[6] VOLLMER F,BRAUN D,LIBCHABER A.Protein detection by optical shift of a resonant microcavity[J].Applied Physics Letters,2002,80(21):4057-4059.
[7] BUMKI M,TOBIAS J K,KERRY J V.Compact fiber-compatible cascaded Raman laser[J].Optics Letters,2003,28(17):1507-1509.
[8] XIA J S,IKEGAMI Y,NEMOTO K,et al.Observation of whispering gallery modes in Si microdisks at room temperature[J].Appl Phys Lett,2007,90(14):141102.
[9] Pan J S,CHENG P H,LEE T D,et al.0.66 μm InGaP/InGaAlP single quantum well microdisk lasers[J].Jpn J Appl Phys,1998,37(6A):L643-L645.
[10] LIN J T,XU Y X,TANG J L,et al.Fabrication of three dimensional microdisk resonators fluoride by femtosecond laser micromachining[J].Appl Phys A,2014,116(4):2019-2023.
[11] SHI S Y,PRATHER D W,YANG L Q,et al.Influence of support structure on microdisk resonator performance[J].Opt Eng,2003,42(2):383-387.
[12] KHANALILOO B,MITCHELL M,HRYCIW A C,et al.High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching[J].Nano Letters,2015,15(8):5131-5136.
[13] VAHALA K J.Optical microcavites[J].Nature,2003,424(6950):839-845.
[14] KIPPENBERG T J,SPILLANE S M,VAHALA K J,et al.Fabrication and coupling to planar high-Q silica disk microcavities[J].Appl Phys Lett,2003,83(4):797-799.
[15] LIN J T,XU Y X,TANG J L,et al.Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining[J].Appl Phys A,2014,116(4):2019-2023.
[16] MATSKO A B,ILCHENKO V S.Optical resonators with whispering gallery modes-part I:basics[J].IEEE Journal of Selected Topics in Quantum Electronics,2013,12(1):15-32.
[17] TIAGO S M,PAMAKSTYS K,LUISM G,et al.Dynamic wet etching of silicon through Isopropanol alcohol evaporation[J].Micromachines,2015,6(10):1534-1545.
[18] SHIKIDA M,NANBARA K.A model explaining mask-corner undercut phenomena in anisotropic silicon etching:a saddlepoint in the etching-rate diagram [J].Sensors and Actuators A:Physical,2002,97/98(3):758-763.
[19] BORSELLI M,JOHNSON T J,PAINTER O.Beyond the Rayleigh scattering limit in high-Q silicon microdisks:theory and experiment[J].Optics Express,2005,13(5):1515-1530.
[20] 邹长铃,董春华,崔金明.回音壁模式光学微腔:基础与应用[J].中国科学:物理学力学天文学,2012,42(11):1155-1175.
[21] DUMEIGE Y,TREBAOL S,GHISA L,et al.Determination of coupling regime of high-Q resonantors and optical gain of highly selective amplifiers[J].Journal of Optical Society of America B,2008,25(12):2073-2080.
[22] BRAGINSKY V B,GORODETSKEY M L,ILCHENKO V S.Quality factor and nonlinear properties of optical whispering gallery modes[J].Phys Letts A,1989,137(7/8):393-397.
[23] GORODESTSKY M L,SAVCHENKOV A A,ILCHENKO V S.Ultimate Q of optical microsphere resonators[J].Opt Letts,1996,21(7):453-455.

备注/Memo

备注/Memo:
收稿日期:2016-11-16 录用日期:2017-02-21
基金项目:中航工业产学研项目(CXY2011XD24); 中国博士后科学基金(2015M582041)
*通信作者:longhao@xmu.edu.cn
引文格式:杨文,龙浩,郭长磊,等.SiO2微盘腔的湿法腐蚀工艺研究[J].厦门大学学报(自然科学版),2017,56(3):410-415.
Citation:YANG W,LONG H,GUO C L,et al.Research on silica microdisk by wet-etching[J].J Xiamen Univ Nat Sci,2017,56(3):410-415.(in Chinese)
更新日期/Last Update: 1900-01-01