|本期目录/Table of Contents|

[1]刘冰杰,边红*,于海征,等.广义长方形张量的注记[J].厦门大学学报(自然科学版),2017,56(03):391-397.[doi:10.6043/j.issn.0438-0479.201601028]
 LIU Bingjie,BIAN Hong*,YU Haizheng,et al.A Note on Generalized Rectangular Tensor[J].Journal of Xiamen University(Natural Science),2017,56(03):391-397.[doi:10.6043/j.issn.0438-0479.201601028]
点击复制

广义长方形张量的注记(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
56卷
期数:
2017年03期
页码:
391-397
栏目:
研究论文
出版日期:
2017-05-24

文章信息/Info

Title:
A Note on Generalized Rectangular Tensor
文章编号:
0438-0479(2017)03-0391-07
作者:
刘冰杰1边红1*于海征2马丽1
1.新疆师范大学数学科学学院,新疆乌鲁木齐830054;2.新疆大学数学科学学院,新疆乌鲁木齐830046
Author(s):
LIU Bingjie1BIAN Hong1*YU Haizheng2MA Li1
1.School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830054,China;2.College of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,China
关键词:
特征值三维长方形张量不可约PerronFrobenius定理
Keywords:
eigenvaluethree dimensional rectangular tensorirreduciblePerronFrobenius theorem
分类号:
O 157.5
DOI:
10.6043/j.issn.0438-0479.201601028
文献标志码:
A
摘要:
PerronFrobenius 定理是非负矩阵的基本结果.特别地,非负张量的 PerronFrobenius 定理与测量链接对象的高阶连通性和超图有关.在长方形张量的基础上定义一个广义长方形张量,并给出了非负广义长方形张量的 PerronFrobenius定理的一些新的结果.
Abstract:
The PerronFrobenius theorem is a fundamental result for nonnegative matrices.In particular,the PerronFrobenius theorem for nonnegative tensors is related to measuring higher order connectivity in linked objects and hypergraphs.In this paper,we define a generalized rectangular tensor which is based on the definition of rectangular tensors,and give some new results on the PerronFrobenius theorem for nonnegative generalized rectangular tensor.

参考文献/References:

[1] QI L.Eigenvalues of a real supersymmetric tensor[J].J Symb Comoput,2005,40:1302-1324.
[2] LIM L H.Singular values and eigenvalues of tensors:a variational approach[J].Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2005,1:129-132.
[3] QI L,WANG Y,WU E.D-eigenvalues of diffusion kurtosis tensor[J].J Comput Appl Math,2008,221:150-157.
[4] NG M,QI L,ZHOU G.Finding the largest eigenvalue of a non-negative tensor[J].SIAM J Matrix Anal Appl,2009,31:1090-1099.
[5] NI Q,QI L,WANG F.An eigenvalue method for the positive definiteness identification problem[J].IEEE Transactions on Automatic Control,2008,53:1096-1107.
[6] QI L,WANG F,WANG Y.Z-eigenvalue methods for a global polynomial optimization problem[J].Math Program,2009,118:301-316.
[7] KNOWLES J K,STERNBERG E.On the ellipticity of the equations of non-linear elastostatics for a special material[J].J Elasticity,1975,5:341-361.
[8] KNOWLES J K,STERNBERG E.On the failure of ellipticity of the equations for finite elastostatic plane strain[J].Arch Ration Mech Anal,1977,63:321-336.
[9] ROSAKIS P.Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics[J].Arch Ration Mech Anal,1990,109:1-37.
[10] WANG Y,ARON M.A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media[J].J Elasticity,1996,44:89-96.
[11] DAHL D,LEINASS J M,MYRHEIM J,et al.A tensor product matrix approximation problem in quantum physics[J].Linear Algebra Appl,2007,420:711-725.
[12] EINSTEIN A,PODOLSKY B,ROSEN N.Can quantum-mechanical description of physical reality be considered complete[J].Phys Rev,1935,47:777-780.
[13] CHANG K C,PEARSON K,ZHANG T.On eigenvalue problems of real symmetric tensors[J].J Math Anal Appl,2009,350:416-422.
[14] CHANG K C,PEARSON K,ZHANG T.Perron-Frobenius theorem for nonnegative tensors[J].Commun Match Sci,2008(6):507-520.
[15] YANG Y,YANG Q.Singular values of nonnegative rectangular tensor[J].Front Math China,2011,6(2):363-378.

备注/Memo

备注/Memo:
收稿日期:2016-01-18 录用日期:2017-02-17
基金项目:国家自然科学基金(11361062,61662079,11061035); 新疆维吾尔自治区自然科学基金(2013211A021); 新疆维吾尔自治区青年科技创新人才培养工程项目(qn2015yx010); 新疆高校科研重点项目(XJEDU2013I04).
*通信作者:bh1218@163.com
引文格式:刘冰杰,边红,于海征,等.广义长方形张量的注记[J].厦门大学学报(自然科学版),2017,56(3):391-397.
Citation:LIU B J,BIAN H,YU H Z,et al.A note on generalized rectangular tensor[J].J Xiamen Univ Nat Sci,2017,56(3):391-397.(in Chinese)
更新日期/Last Update: 1900-01-01