|本期目录/Table of Contents|

[1]边 力,王 军*.简化基因组测序技术及其在海洋生物研究中的应用[J].厦门大学学报(自然科学版),2017,56(01):3-12.[doi:10.6043/j.issn.0438-0479.201607015]
 BIAN Li,WANG Jun*.The Reduced-representation Sequencing Technique and Its Applications in Marine Organisms[J].Journal of Xiamen University(Natural Science),2017,56(01):3-12.[doi:10.6043/j.issn.0438-0479.201607015]
点击复制

简化基因组测序技术及其在海洋生物研究中的应用(PDF)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
56卷
期数:
2017年01期
页码:
3-12
栏目:
综 述
出版日期:
2017-01-23

文章信息/Info

Title:
The Reduced-representation Sequencing Technique and Its Applications in Marine Organisms
文章编号:
0438-0479(2017)01-0003-10
作者:
边 力王 军*
厦门大学海洋与地球学院,福建 厦门 361102
Author(s):
BIAN LiWANG Jun*
College of Ocean & Earth Sciences,Xiamen University,Xiamen 361102,China
关键词:
简化基因组测序 海洋生物 基因分型 限制性酶切位点相关DNA测序
Keywords:
reduced-representation sequencing marine organism genotyping restriction site-associated DNA sequencing(RAD-seq)
分类号:
Q 341
DOI:
10.6043/j.issn.0438-0479.201607015
文献标志码:
A
摘要:
传统开发遗传标记的方法通常会消耗大量的人力、物力和时间,伴随着高通量测序技术的飞速发展,一种高效的标记开发技术即简化基因组测序技术开始得到广泛应用.简化基因组测序技术可以在一次实验中获得成千上万的遗传标记,建库过程简易,成本较低.其通过实验手段降低基因组的复杂度,仅对部分基因组进行测序,随后在该部分获得的基因组开发分子标记.基于酶切的简化基因组测序技术可分为三大类:简化代表库测序、限制性酶切位点相关DNA测序和低覆盖度的分型测序.在海洋生物研究中,简化基因组测序技术已被广泛应用于群体遗传学、系统进化学、适应性进化、遗传图谱构建及数量性状位点定位等研究领域.
Abstract:
Traditionally,methods of molecular marker development were expensive and involved iterative,time-consuming PCR process.With the rapid development of next generation sequencing,a very efficient marker development technique,reduced-representation sequencing,has been widely utilized in various research areas.The library construction protocol is simple with low cost.More-over,the reduced-representation sequencing could identify thousands of markers in only one sequencing process.It reduces the complexity of the genome,sequences the reduced genome and searches markers on this partial genome.The reduced-representation sequencing can be grouped into three classes:reduced-representation sequencing,restriction site-associated DNA sequencing(RAD-seq),and low coverage genotyping.This technique has been widely applied in population genetics,phylogenetics,adaptive evolution,linkage map and quantitative trait locus(QTL)mapping studies in marine organisms.

参考文献/References:

[1] BOTSTEIN D,WHITE R L,SKOLNICK M,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J].American Journal of Human Genetics,1980,32(3):314-331.
[2] TAUTZ D,RENZ M.Simple sequences are ubiquitous repetitive components of eukaryotic genomes[J].Nucleic Acids Research,1984,12(10):4127-4138.
[3] LANDER E S.The new genomics:global views of biology[J].Science,1996,274(5287):536-539.
[4] LUIKART G,ENGLAND P R,TALLMON D,et al.The power and promise of population genomics:from genotyping to genome typing[J].Nature Reviews Genetics,2003,4(12):981-994.
[5] WANG D G,FAN J B,SIAO C J,et al.Large-scale identification,mapping,and genotyping of single-nucleotide polymorphisms in the human genome[J].Science,1998,280(5366):1077-1082.
[6] SANGER F,COULSON A R,BARRELL B G,et al.Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing[J].Journal of Molecular Biology,1980,143(2):161-178.
[7] SINGH B,SINGH A.High-throughput SNP genotyping[M]∥Marker-assisted plant breeding:principles and practices.New Delhi:Springer,2015:367-400.
[8] GLENN T C.Field guide to next-generation DNA sequencers[J].Molecular Ecology Resources,2011,11(5):759-769.
[9] BINLADEN J,GILBERT M T P,BOLLBACK J P,et al.The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing[J].PLoS One,2007,2(2):e197.
[10] MEYER M,STENZEL U,HOFREITER M.Parallel tagged sequencing on the 454 platform[J].Nature Protocols,2008,3(2):267-278.
[11] HAMADY M,WALKER J J,HARRIS J K,et al.Error-correcting barcoded primers allow hundreds of samples to be pyrosequenced in multiplex[J].Nature Methods,2008,5(3):235-237.
[12] NEIMAN M,LUNDIN S,SAVOLAINEN P,et al.Decoding a substantial set of samples in parallel by massive sequencing[J].PLoS One,2011,6(3):e17785.
[13] CUTLER D J,JENSEN J D.To pool,or not to pool?[J].Genetics,2010,186(1):41-43.
[14] HOHENLOHE P A,AMISH S J,CATCHEN J M,et al.Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout[J].Molecular Ecology Resources,2011,11(s1):117-122.
[15] ALTSHULER D,POLLARA V J,COWLES C R,et al.An SNP map of the human genome generated by reduced representation shotgun sequencing[J].Nature,2000,407(6803):513-516.
[16] VAN TASSELL C P,SMITH T P,MATUKUMALLI L K,et al.SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries[J].Nature Methods,2008,5(3):247-252.
[17] KERSTENS H H,CROOIJMANS R P,VEENENDAAL A,et al.Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology:applied to turkey[J].BMC Genomics,2009,10(1):479.
[18] NIELSEN R,PAUL J S,ALBRECHTSEN A,et al.Geno-type and SNP calling from next-generation sequencing data[J].Nature Reviews Genetics,2011,12(6):443-451.
[19] SANCHEZ C C,SMITH T P,WIEDMANN R T,et al.Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library[J].BMC Genomics,2009,10(1):559.
[20] ZOU X,SHI C,AUSTIN R S,et al.Genome-wide single nucleotide polymorphism and insertion-deletion discovery through next-generation sequencing of reduced representation libraries in common bean[J].Molecular Breeding,2014,33(4):769-778.
[21] GUO G,DONDUP D,ZHANG L,et al.Identification of SNPs in barley(Hordeum vulgare L.)by deep sequencing of six reduced representation libraries[J].The Crop Journal,2014,2(6):419-425.
[22] TANIGUCHI Y,MATSUDA H,YAMADA T,et al.Genome-wide SNP and STR discovery in the Japanese crested ibis and genetic diversity among founders of the Japanese population[J].PLoS One,2013,8(8):e72781.
[23] BOVO S,BERTOLINI F,SCHIAVO G,et al.Reduced representation libraries from DNA pools analysed with next generation semiconductor based-sequencing to identify SNPs in extreme and divergent pigs for back fat thickness[J].International Journal of Genomics,2015,2015:950737.
[24] VAN ORSOUW N J,HOGERS R C,JANSSEN A,et al.Complexity reduction of polymorphic sequences(CRoPSTM):a novel approach for large-scale polymorphism discovery in complex genomes[J].PLoS One,2007,2(11):e1172.
[25] MAMMADOV J A,CHEN W,REN R,et al.Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding[J].Theoreti-cal and Applied Genetics,2010,121(3):577-588.
[26] GOMPERT Z,FORISTER M L,FORDYCE J A,et al.Bayesian analysis of molecular variance in pyrosequences quantifies population genetic structure across the genome of Lycaeides butterflies[J].Molecular Ecology,2010,19(12):2455-2473.
[27] DE BACKER M,BONANTS P,PEDLEY K F,et al.Genetic relationships in an international collection of Puccinia horiana isolates based on newly identified molecular markers and demonstration of recombination[J].Phytopathology,2013,103(11):1169-1179.
[28] BAIRD N A,ETTER P D,ATWOOD T S,et al.Rapid SNP discovery and genetic mapping using sequenced RAD markers[J].PLoS One,2008,3(10):e3376.
[29] DAVEY J W,BLAXTER M L.RADSeq:next-generation population genetics[J].Briefings in Functional Genomics,2010,9(5/6):416-423.
[30] LONGO G,BERNARDI G.The evolutionary history of the embiotocid surfperch radiation based on genome-wide RAD sequence data[J].Molecular Phylogenetics and Evolution,2015,88:55-63.
[31] JONES J C,FAN S,FRANCHINI P,et al.The evolutionary history of Xiphophorus fish and their sexually selected sword:a genome-wide approach using restriction site-associated DNA sequencing[J].Molecular Ecology,2013,22(11):2986-3001.
[32] TARIEL J,LONGO G C,BERNARDI G.Tempo and mode of speciation in Holacanthus angelfishes based on RADseq markers[J].Molecular Phylogenetics and Evolution,2016,98:84-88.
[33] DEAGLE B E,FAUX C,KAWAGUCHI S,et al.Antarctic krill population genomics:apparent panmixia,but genome complexity and large population size muddy the water[J].Molecular Ecology,2015,24(19):4943-4959.
[34] BLANCO-BERCIAL L,BUCKLIN A.New view of popu-lation genetics of zooplankton:RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropages typicus[J].Molecular Ecology,2016,25:1566-1580.
[35] BENESTAN L,GOSSELIN T,PERRIER C,et al.RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species,the American lobster(Homarus americanus)[J].Molecular Ecology,2015,24(13):3299-3315.
[36] BRIEUC M S,ONO K,DRINAN D P,et al.Integration of random forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon(Oncorhynchus tshawy-tscha)[J].Molecular Ecology,2015,24(11):2729-2746.
[37] LAPORTE M,PAVEY S,ROUGEUX C,et al.RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels[J].Molecular Ecology,2016,25(1):219-237.
[38] ZHANG N,ZHANG L,TAO Y,et al.Construction of a high density SNP linkage map of kelp(Saccharina japonica)by sequencing Taq Ⅰ site associated DNA and mapping of a sex determining locus[J].BMC Genomics,2015,16(1):189.
[39] SHAO C,NIU Y,RASTAS P,et al.Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder(Paralichthys olivaceus):applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis[J].DNA Research,2015,22(2):161-170.
[40] LIU S,VALLEJO R L,GAO G,et al.Identification of single-nucleotide polymorphism markers associated with cortisol response to crowding in rainbow trout[J].Marine Biotechnology,2015,17(3):328-337.
[41] PETERSON B K,WEBER J N,KAY E H,et al.Double digest RADseq:an inexpensive method for de novo SNP discovery and genotyping in model and non-model species[J].PLoS One,2012,7(5):e37135.
[42] WANG S,MEYER E,MCKAY J K,et al.2b-RAD:a simple and flexible method for genome-wide genotyping[J].Nature Methods,2012,9(8):808-810.
[43] TOONEN R J,PURITZ J B,FORSMAN Z H,et al.ezRAD:a simplified method for genomic genotyping in non-model organisms[J].PeerJ,2013,1(14):e203
[44] SUN X,LIU D,ZHANG X,et al.SLAF-seq:an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J].PLoS One,2013,8(3):e58700.
[45] LI Y,SIDORE C,KANG H M,et al.Low-coverage sequencing:implications for design of complex trait association studies[J].Genome Research,2011,21:940-951.
[46] ELSHIRE R J,GLAUBITZ J C,SUN Q,et al.A robust,simple genotyping-by-sequencing(GBS)approach for high diversity species[J].PLoS One,2011,6(5):e19379.
[47] GLAZER A M,KILLINGBECK E E,MITROS T,et al.Genome assembly improvement and mapping convergently evolved skeletal traits in sticklebacks with genotyping-by-sequencing[J].G3:Genes Genomes Genetics,2015,5(7):1463-1472.
[48] SKOVRIND M,OLSEN M T,VIEIRA F G,et al.Genomic population structure of freshwater-resident and anadromous ide(Leuciscus idus)in north-western Europe[J].Ecology and Evolution,2016,6(4):1064-1074.
[49] NUNEZ J,SEALE T,FRASER M,et al.Population genomics of the euryhaline teleost Poecilia latipinna[J].PLoS One,2015,10(9):e0137077.
[50] WHITE T A,PERKINS S E,HECKEL G,et al.Adaptive evolution during an ongoing range expansion:the invasive bank vole(Myodes glareolus)in Ireland[J].Molecular Ecology,2013,22(11):2971-2985.
[51] CAHILL A E,LEVINTON J S.Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes[J].Molecu-lar Ecology,2016,25(2):515-526.
[52] GUO B,DEFAVERI J,SOTELO G,et al.Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks[J].BMC Biology,2015,13(1):19.
[53] ANDOLFATTO P,DAVISON D,EREZYILMAZ D,et al.Multiplexed shotgun genotyping for rapid and efficient genetic mapping[J].Genome Research,2011,21(4):610-617.
[54] YOU X,SHU L,LI S,et al.Construction of high-density genetic linkage maps for orange-spotted grouper Epinephelus coioides using multiplexed shotgun genotyping[J].BMC Genetics,2013,14(1):113.
[55] PELUFFO A E,NUEZ I,DEBAT V,et al.A major locus controls a genital shape difference involved in reproductive isolation between Drosophila yakuba and Drosophila santomea[J].G3:Genes Genomes Genetics,2015,5(12):2893-2901.
[56] EREZYILMAZ D F,STERN D L.Pupariation site prefe-rence within and between Drosophila sibling species[J].Evolution,2013,67(9):2714-2727.
[57] SMITH H,WHITE B,KUNDERT P,et al.Genome-wide QTL mapping of saltwater tolerance in sibling species of Anopheles(malaria vector)mosquitoes[J].Heredity,2015,115:471-479.
[58] BARLEY A J,MONNAHAN P J,THOMSON R C,et al.Sun skink landscape genomics:assessing the roles of micro-evolutionary processes in shaping genetic and phenotypic diversity across a heterogeneous and fragmented landscape[J].Molecular Ecology,2015,24(8):1696-1712.
[59] MORT M E,CRAWFORD D J,KELLY J K,et al.Multiplexed-shotgun-genotyping data resolve phylogeny within a very recently derived insular lineage[J].American Journal of Botany,2015,102(4):634-641.
[60] DRURY C,DALE K E,PANLILIO J M,et al.Genomic variation among populations of threatened coral:Acropora cervicornis[J].BMC Genomics,2016,17(1):1-14.
[61] HERRERA S,WATANABE H,SHANK T M.Evolutionary and biogeographical patterns of barnacles from deep-sea hydrothermal vents[J].Molecular Ecology,2015,24(3):673-689.
[62] EVERETT M V,SEEB J E.Detection and mapping of QTL for temperature tolerance and body size in chinook salmon(Oncorhynchus tshawytscha)using genotyping by sequencing[J].Evolutionary Applications,2014,7(4):480-492.
[63] AO J,LI J,YOU X,et al.Construction of the high-density genetic linkage map and chromosome map of large yellow croaker(Larimichthys crocea)[J].International Journal of Molecular Sciences,2015,16(11):26237-26248.
[64] TIAN M,LI Y,JING J,et al.Construction of a high-density genetic map and quantitative trait locus mapping in the sea cucumber Apostichopus japonicus[J].Scientific Reports,2015,5:14852.
[65] REN P,PENG W,YOU W,et al.Genetic mapping and quantitative trait loci analysis of growth-related traits in the small abalone Haliotis diversicolor using restriction-site-associated DNA sequencing[J].Aquaculture,2015,454:163-170.

备注/Memo

备注/Memo:
收稿日期:2016-07-13 录用日期:2016-08-23
基金项目:国家自然科学基金(31372504; 41476118)
*通信作者:junw@xmu.edu.cn
更新日期/Last Update: 1900-01-01