|本期目录/Table of Contents|

[1]杨润青,翟 鹏*,魏 一,等.基于最小加工冲击的活塞外廓线重构及优化[J].厦门大学学报(自然科学版),2019,58(03):455-460.[doi:10.6043/j.issn.0438-0479.201809028]
 YANG Runqing,ZHAI Peng*,WEI Yi,et al.Reconstruction and optimization of piston profile curve based on minimum processing impact[J].Journal of Xiamen University(Natural Science),2019,58(03):455-460.[doi:10.6043/j.issn.0438-0479.201809028]
点击复制

基于最小加工冲击的活塞外廓线重构及优化(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年03期
页码:
455-460
栏目:
研究论文
出版日期:
2019-05-28

文章信息/Info

Title:
Reconstruction and optimization of piston profile curve based on minimum processing impact
文章编号:
0438-0479(2019)03-0455-06
作者:
杨润青1翟 鹏1*魏 一1韩宇珍1李传坤2孙丽丽2刘振文3
1.山东大学机电与信息工程学院,山东 威海 264209; 2.山东滨州渤海活塞有限公司技术中心,山东 滨州 256602; 3.山东玲珑机电有限公司技术中心,山东 烟台 265400
Author(s):
YANG Runqing1ZHAI Peng1*WEI Yi1HAN Yuzhen1LI Chuankun2SUN Lili2LIU Zhenwen3
1.School of Mechanical Electrical & Information Engineering,Shandong University,Weihai 264209 China; 2.Technology Center of Shandong Binzhou Bohai Piston Co.,Ltd.,Binzhou 256600 China; 3.Technology Center of Shandong Linglong Electrical Co.,Ltd.,Yantai 265400 China
关键词:
活塞外圆 椭圆-偏心圆 型线重构 减小冲击
Keywords:
point skirt outline ellipse-eccentric reconstruction reduce shock
分类号:
TG 659
DOI:
10.6043/j.issn.0438-0479.201809028
文献标志码:
A
摘要:
由椭圆-偏心圆组成的活塞组合型外廓线,在高速插补时通常是对外廓线的型值点用三次样条曲线进行拟合,由于三次样条曲线拟合不能实现2阶参数(即C2)连续而引起冲击,影响被加工活塞的轮廓及尺寸精度.为了减小冲击,将椭圆-偏心圆交点按奇异点处理,删除奇异点及其相邻角度范围的型值点,并采用五次样条曲线进行拟合.以重构后组合型线的加速度最小为目标,在满足精度要求的条件下,对可删除插值角度进行了优化.加工实验结果表明,优化后的活塞外圆能实现加速度无突变且轮廓满足精度要求.
Abstract:
In the case of high-speed interpolation,the combined external piston profile composed of ellipse-eccentric circle is usually fitted with cubic spline curves at the data point of the external profile.Since the fitting of cubic spline curve cannot achieve the continuity of second-order parameters(C2),the impact will originate,affecting the contour and dimensional accuracy of the processed piston.For the purpose of reduceing the impact,the method treats the intersection point of the elliptic-eccentricity circle as a singular point,deletes the singular point and its adjacent angle range,and then uses the quintic spline curve for fitting.To minimize the acceleration of the reconstructed composite line,we optimize the expendable interpolation angle under the condition of satisfying the precision requirement.Machining-experiment results show that the optimized piston outer circle can achieve no abrupt acceleration and the contour meets the precision requirements.

参考文献/References:

[1] 田欣.中凸变椭圆活塞型面数控车削创成技术研究[D].济南:山东大学,2014:6-7.
[2] 郑冬.大尺寸中凸变椭圆活塞车削加工衍生式数控系统研究[D].北京:中国农业大学,2014:5-6.
[3] 刘明晖.柴油机活塞外圆型面设计及参数建模研究[D].长沙:湖南大学,2013:20.
[4] 吴海韵,姜涛,常小龙,等.二次椭圆-偏心正圆组合活塞裙部加工算法优化及轨迹点计算[J].厦门大学学报(自然科学版),2014,53(2):212-216.
[5] FENG Z,LIU H,HAO R.Research on spline interpolation of smoothness of machine tool[C]∥International Conference on Robots & Intelligent System.Huaian:IEEE,2017:266-269.
[6] 张林华,赵庆志,张兴武,等.对等间距法逼近三次样条曲线的再研究[J].机床与液压,2016,44(23):136-139.
[7] GE M,WU P,ZHU D,et al.Application of different curve interpolation and fitting methods in water distribution calculation of mobile sprinkler machine[J].Biosystems Engineering,2018,174:316-328.
[8] 谌侨.开放式中凸变椭圆活塞车削加工研究[D].镇江:江苏科技大学,2015:10.
[9] KIM B S,TSAO T C.Development of a novel variable rake angle mechanism for noncircular turning and its control[J].Journal of Mechanical Science and Technology,2010,24(5):1035-1040.
[10] QIANG L,WU A,BING C.Variable angle compensation control of noncircular turning[J].The International Journal of Advanced Manufacturing Technology,2014,70(1):735-746.
[11] 李抢,艾武,段春,等.基于高响应直线电机的非圆曲面加工技术研究[J].中国机械工程,2012,23(23):2869-2874.
[12] YANG J,AI W,LIU Y,et al.Kinematics model and trajectory interpolation algorithm for CNC turning of non-circular profiles[J].Precision Engineering,2018,54:212-221.
[13] 黄海滨,马凯威,刘建春,等.中凸变椭圆活塞的车削轨迹优化与误差分析[J].组合机床与自动化加工技术,2014(9):66-69.
[14] 孙华刚,袁惠群.活塞裙部超磁致伸缩车削加工机理研究[J].制造技术与机床,2007(9):14-17.
[15] 于金刚,林浒,张晓辉,等.一种新型的Jerk连续加减速控制方法研究[J].组合机床与自动化加工技术,2009(8):61-64.
[16] 陈蔚.样条曲线插补算法及其自适应速度控制研究[D].合肥:合肥工业大学,2014:38.
[17] FARIN G,REIN G,SAPIDIS N,et al.Fairing cubic B-spline curves[J].Computer Aided Geometric Design,1987,4(1):91-103.

备注/Memo

备注/Memo:
收稿日期:2018-09-21 录用日期:2019-02-18
基金项目:山东省科技厅高端制造装备重大科技创新工程项目(2017CXGC0911); 山东省泰山领军培育项目(2016GRC3205); 山东省自然科学基金(ZR2019MEE086)
*通信作者:zhaip@sdu.edu.cn
更新日期/Last Update: 1900-01-01