|本期目录/Table of Contents|

[1]李文昌,郭景华*,王 进.分层架构下智能电动汽车纵向运动自适应模糊滑模控制[J].厦门大学学报(自然科学版),2019,58(03):422-428.[doi:10.6043/j.issn.04380479.201808006]
 LI Wenchang,GUO Jinghua*,WANG Jin.Adaptive fuzzy sliding mode control for longitudinal motion of intelligent electric vehicles under layered architecture[J].Journal of Xiamen University(Natural Science),2019,58(03):422-428.[doi:10.6043/j.issn.04380479.201808006]
点击复制

分层架构下智能电动汽车纵向运动自适应模糊滑模控制(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年03期
页码:
422-428
栏目:
研究论文
出版日期:
2019-05-28

文章信息/Info

Title:
Adaptive fuzzy sliding mode control for longitudinal motion of intelligent electric vehicles under layered architecture
文章编号:
04380479(2019)03042207
作者:
李文昌12郭景华12*王 进12
1.厦门大学航空航天学院,福建 厦门 361102; 2.厦门大学深圳研究院,广东 深圳 518057
Author(s):
LI Wenchang12GUO Jinghua12*WANG Jin1
1.School of Aerospace Engineering,Xiamen University,Xiamen 361102,China; 2.Shenzhen Research Institute of Xiamen University, Shenzhen 518057,China
关键词:
智能电动汽车 纵向运动 分层控制 自适应模糊滑模 驱动/制动切换
Keywords:
intelligent electric vehicles(IEV) longitudinal motion hierarchical control adaptive fuzzy sliding mode driving/braking switching
分类号:
U 461
DOI:
10.6043/j.issn.04380479.201808006
文献标志码:
A
摘要:
针对智能电动汽车(intelligent electric vehicles,IEV)的纵向控制在不确定性干扰下存在非线性、强时变特征,提出一种分层控制架构下的智能电动汽车纵向跟车运动自适应模糊滑模控制方法.根据经典理论力学建立表征智能电动汽车纵向行为机理的动力学系统模型,并进一步构建智能电动汽车纵向跟车运动分层控制构架.上层控制根据本车与前车的行驶状态信息得出期望加速度滑模控制律,进而利用自适应模糊系统替代滑模切换项以改善控制性能; 下层控制通过设计驱动/制动切换策略以提高行驶舒适性,然后基于逆动力学模型实时求解期望控制力矩以跟踪期望加速度.为验证所提方法的有效性,在不同行驶工况下进行的仿真试验结果表明,该方法能实现本车平稳准确地跟随前车行驶,且对前车加速度的干扰具有鲁棒性.
Abstract:
Aiming at that the intelligent electric vehicles(IEV)have nonlinear and strong time-varying characteristics under uncertainty interference,an adaptive fuzzy sliding mode hierarchical control method for longitudinal car-following motion of IEV is proposed.Based on classical theoretical mechanics,a dynamic system model is established to characterize the mechanism of IEV longitudinal behavior.We construct an adaptive hierarchical control framework in which the upper control layer is designed for obtaining the desired acceleration adaptive sliding mode control law according to the driving state information of the host and preceding vehicles.To improve the control performance,we adopt the fuzzy system to replace the sliding mode switching item to realize adaptive control,effectively overcoming the parameter uncertainty of IEV.In the lower control layer,a drive/brake switch logic is designed to ensure the driving comfort,and the expected torque is solved in real time to track the desired acceleration planned in the upper control layer.For the purpose of verifying the effectiveness of the proposed method,simulation experiments are carried out under different driving conditions.Results show that this method can realize smooth and accurate following of IEV to the preceding vehicle,with robustness toward the interference of the preceding vehicle’s acceleration.

参考文献/References:

[1]ZHANG S W,LUO Y G,LI K Q,et al.Real-time energy-efficient control for fully electric vehicles based on explicit model predictive control method[J].IEEE Transactions on Vehicular Technology,2018,67:4693-4701.
[2]HUANG Y J,WANG H,KHAJEPOUR A,et al.Model predictive control power management strategies for HEVs:a review[J].Journal of Power Sources,2017,341:91-106.
[3]DAVIS K,HAYES J G.Energy management strategy development to minimize the operating costs for a fuel cell vehicle[C]∥IEEE Vehicle Power and Propulsion Conference.Belfort:IEEE,2017:1-6.
[4]GANJI B,KOUZANI A Z,SUI Y K,et al.Adaptive cruise control of a HEV using sliding mode control[J].Expert Systems with Applications,2014,41(2):607-615.
[5]ZHU M,CHEN H,XIONG G.A model predictive speed tracking control approach for autonomous ground vehicles[J].Mechanical Systems and Signal Processing,2016,87:138-152.
[6]LI S E,DENG K,LI K Q,et al.Terminal sliding mode control of automated car-following system without reliance on longitudinal acceleration information[J].Mechatronics,2015,30:327-337.
[7]马国成,刘昭度,王宝锋,等.车辆驾驶员辅助系统中基于运动模型的前车最优跟随控制[J].机械工程学报,2016,52(18):118-125.
[8]LIN Y C,NGUYEN H L T,WANG C H.Adaptive neuro-fuzzy predictive control for design of adaptive cruise control system[C]∥IEEE International Conference on Networking,Sensing and Control.Calabria:IEEE,2017:767-772.
[9]LUO Y G,CHEN T,ZHANG S W,et al.Intelligent hybrid electric vehicle ACC with coordinated control of tracking ability,fuel economy,and ride comfort[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(4):2303-2308.
[10]罗禹贡,陈涛,周磊,等.奔腾智能混合动力电动轿车自适应巡航控制系统[J].机械工程学报,2010,46(6):2-7.
[11]初亮,李天骄,孙成伟.面向再生制动优化的电动车自适应巡航控制策略[J].浙江大学学报(工学版),2017,51(8):1596-1602.
[12]YI K,MOON I,KWON Y D.A vehicle-to-vehicle distance control algorithm for stop-and-go cruise control[C]∥Intelligent Transportation Systems.Oakland:Alphascript,2001:478-482.
[13]WANG J M,RAJAMANI R.The impact of adaptive cruise control systems on highway safety and traffic flow[J].Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering,2004,218(218):111-130.
[14]郭景华,李琳辉,胡平,等.基于模糊逻辑的无人驾驶车纵向多滑模控制[J].中国公路学报,2013,26(1):170-176.
[15]詹军.用于自适应巡航控制的汽车纵向动力学模型的建立[J].吉林大学学报(工学版),2006,36(2):157-0160.
[16]孙煜,何德峰,吴赛男,等.基于Eclipse平台的车辆自适应巡航控制仿真[J].计算机工程与应用,2017,53(23):250-255.

备注/Memo

备注/Memo:
收稿日期:2018-08-08 录用日期:2019-03-08
基金项目:国家重点研发计划(2016YFB0100900); 国家自然科学基金(61304193); 福建省自然科学基金(2017J01100); 深圳市科技计划基础研究项目(JCYJ20180306172720364)
*通信作者:guojh@xmu.edu.cn
更新日期/Last Update: 1900-01-01