|本期目录/Table of Contents|

[1]龙伟锋,曾吉文*,瞿云云.半群OPPIE*(X)的秩[J].厦门大学学报(自然科学版),2019,58(03):382-386.[doi:10.6043/j.issn.0438-0479.201807030]
 LONG Weifeng,ZENG Jiwen*,QU Yunyun.The rank of semi-group OPPIE*(X)[J].Journal of Xiamen University(Natural Science),2019,58(03):382-386.[doi:10.6043/j.issn.0438-0479.201807030]
点击复制

半群OPPIE*(X)的秩(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年03期
页码:
382-386
栏目:
研究论文
出版日期:
2019-05-28

文章信息/Info

Title:
The rank of semi-group OPPIE*(X)
文章编号:
0438-0479(2019)03-0382-05
作者:
龙伟锋12曾吉文1*瞿云云2
1.厦门大学数学科学学院,福建 厦门 361055; 2.贵州师范大学数学科学学院,贵州 贵阳 550001
Author(s):
LONG Weifeng12ZENG Jiwen1*QU Yunyun2
1.School of Mathematical Sciences,Xiamen University,Xiamen 361005,China; 2.School of Mathematical Sciences,Guizhou Normal University,Guiyang 550001,China
关键词:
E*关系 方向保序
Keywords:
E*-preserving preserving orientation rank
分类号:
O 152.7
DOI:
10.6043/j.issn.0438-0479.201807030
文献标志码:
A
摘要:
X为有限全序集,EX上的凸等价关系.令OPPIE*(X)为所有E类方向保序变换所构成的半群,得到了OPPIE*(X)的秩.
Abstract:
Let E be a convex equivalence on a finite set X.The semi-group denote by OPPIE*(X) consisting of all orientation-preserving transformations of type E.The rank of OPPIE*(X) is obtained.

参考文献/References:

[1] 龙伟锋,游泰杰,龙伟芳,等.保E*关系的部分一一变换半群[J].西南大学学报(自然科学版),2013,35(04):63-66.
[2] FERNANDES V H.The monoid of all injective order preserving partial transformation on a finite chain[J].Semigroup Forum,2001,62:178-204.
[3] 龙伟锋,游泰杰.I(E*)(X)中E类方向保序变换半群的秩[J].数学的实践与认识,2014,44(10):230-234.
[4] PEI H S.On the rank of the semigroup[J].Semigroup Forum,2005,70:107-117.
[5] GOMES G M S,HOWIE J M.On the rank of certain finite semigruops of transformations[J].Math Proc Cambridge Phil Soc,1987,101:395-403.
[6] GOMES G M S, HOWIE J M.On the ranks of certain semigroups of order-preserving transformations[J].Semigroup Forum,1992,45:272-282.
[7] ZHAO P.On the ranks of certain semigroups of orientation preserving transformations[J].Communications in Algebra,2011,39:4195-4205.
[8] 龙伟锋,龙伟芳,陈云坤.TE(X)中局部方向保序变换半群的秩[J].贵州师范大学学报(自然科学版),2011,29(2):84-87.
[9] 亓顺芹.半群C(n,r)(k)的秩和幂等元秩[J].贵州师范大学学报(自然科学版),2016,34(5):57-59.
[10] HOWIE J M.An introduction to semigroup theory[M].London:Academic Press,1976:2-15.[1] 龙伟锋,游泰杰,龙伟芳,等.保E*关系的部分一一变换半群[J].西南大学学报(自然科学版),2013,35(04):63-66.
[2] FERNANDES V H.The monoid of all injective order preserving partial transformation on a finite chain[J].Semigroup Forum,2001,62:178-204.
[3] 龙伟锋,游泰杰.I(E*)(X)中E类方向保序变换半群的秩[J].数学的实践与认识,2014,44(10):230-234.
[4] PEI H S.On the rank of the semigroup[J].Semigroup Forum,2005,70:107-117.
[5] GOMES G M S,HOWIE J M.On the rank of certain finite semigruops of transformations[J].Math Proc Cambridge Phil Soc,1987,101:395-403.
[6] GOMES G M S, HOWIE J M.On the ranks of certain semigroups of order-preserving transformations[J].Semigroup Forum,1992,45:272-282.
[7] ZHAO P.On the ranks of certain semigroups of orientation preserving transformations[J].Communications in Algebra,2011,39:4195-4205.
[8] 龙伟锋,龙伟芳,陈云坤.TE(X)中局部方向保序变换半群的秩[J].贵州师范大学学报(自然科学版),2011,29(2):84-87.
[9] 亓顺芹.半群C(n,r)(k)的秩和幂等元秩[J].贵州师范大学学报(自然科学版),2016,34(5):57-59.
[10] HOWIE J M.An introduction to semigroup theory[M].London:Academic Press,1976:2-15.

备注/Memo

备注/Memo:
收稿日期:2018-07-19 录用日期:2018-10-24
基金项目:国家自然科学基金(11461014); 贵州省教育厅青年科技人才成长项目(黔教合KY字[2016]130)
*通信作者:jwzeng@xmu.edu.cn
更新日期/Last Update: 1900-01-01