|本期目录/Table of Contents|

[1]代少伟,李伟东,邱 虹,等.氧化石墨烯改性高温环氧树脂基碳纤维复合材料的热性能与力学性能[J].厦门大学学报(自然科学版),2019,58(03):324-332.[doi:10.6043/j.issn.0438-0479.201806009]
 DAI Shaowei,LI Weidong,QIU Hong,et al.Thermal and mechanical properties of graphene oxide modified high temperature epoxy resin based carbon fiber composites[J].Journal of Xiamen University(Natural Science),2019,58(03):324-332.[doi:10.6043/j.issn.0438-0479.201806009]
点击复制

氧化石墨烯改性高温环氧树脂基碳纤维复合材料的热性能与力学性能(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年03期
页码:
324-332
栏目:
研究论文
出版日期:
2019-05-28

文章信息/Info

Title:
Thermal and mechanical properties of graphene oxide modified high temperature epoxy resin based carbon fiber composites
文章编号:
0438-0479(2019)03-0324-09
作者:
代少伟1李伟东2邱 虹1张 莹1周 川1刘文军1胡晓兰1*白 华1周玉敬3
1.厦门大学材料学院,福建省防火阻燃材料重点实验室,福建 厦门 361005; 2.中航复合材料有限责任公司,航空工业复合材料技术中心,先进复合材料重点实验室,北京 101300; 3.北京机科国创轻量化科学研究院有限公司,先进成型技术与装备国家重点实验室,北京 100083
Author(s):
DAI Shaowei1LI Weidong2QIU Hong1ZHANG Ying1ZHOU Chuan1LIU Wenjun1HU Xiaolan1*BAI Hua1ZHOU Yujing3
1.Fujian Provincial Key Laboratory of Fire Retardant Materials,College of Materials,Xiamen University,Xiamen 361005,China; 2.National Key Laboratory of Advanced Composites,AVIC Composite Technology Center, AVIC Composite Co.,Ltd.,Beijing 101300,China; 3.State Key Laboratory of Advanced Forming Technology and Equipment,BeijingJike Guochuang Lightweight Science Research Institute Co.,Ltd.,Beijing 100083,China
关键词:
氧化石墨烯 碳纤维 树脂基复合材料 热性能 力学性能 微观形貌
Keywords:
graphene oxide carbon fiber epoxy matrix composites thermal properties mechanical properties micromorphology
分类号:
TB 332
DOI:
10.6043/j.issn.0438-0479.201806009
文献标志码:
A
摘要:
采用湿法预浸技术和模压工艺制备了氧化石墨烯(GO)改性碳纤维/环氧树脂(CF/E54-DDS)复合材料,利用差示扫描量热(DSC)分析、动态热机械分析(DMTA)、超声波C扫描等研究了GO对复合材料的热固化性能、凝胶工艺性能、动态热机械性能以及抗冲击损伤性能的影响.结果表明:GO结构中的羟基和羧基会促进改性树脂体系的固化反应,加快GO/E54-DDS的固化反应进程.在GO添加量(质量分数)小于0.5%时,GO的活性基团可增加改性树脂体系的交联密度,从而提高复合材料的玻璃化转变温度; 但GO添加量大于0.8%时,会因DDS在固化网络结构中比例的大幅下降,反而降低复合材料的玻璃化转变温度.微观形貌分析显示GO/CF/E54-DDS预浸料比CF/E54-DDS预浸料表现出更好的浸润效果.CF/E54-DDS复合材料被破坏后CF表面光洁,破坏主要发生在CF与树脂基体的界面; 而GO/CF/E54-DDS复合材料被破坏后,CF表面紧密黏附着GO/E54-DDS固化物,破坏主要发生在CF织物层间的GO/E54-DDS区域.冲击后压缩强度测试表明GO的存在提高了GO/CF/E54-DDS复合材料抵抗横向裂纹和纵向裂纹扩展的能力,减小了复合材料的损伤投影面积和裂纹凹坑深度,提高了冲击后压缩强度.
Abstract:
Graphene oxide(GO)modified carbon fiber/epoxy(CF/E54-DDS)composites were prepared by wet prepreg technology and molding process.And the effects of GO on the thermal curing property,gelation process,dynamic thermal mechanical property and anti-impact damage property of the composites were tested with differential scanning calorimetry(DSC)analysis,dynamic mechanical thermal analysis(DMTA),ultrasonic C scanning and so on.Results showed that hydroxyl groups and carboxyl groups of GO could promote the curing reaction of the modified resin system,and accelerate the process of curing reaction of GO/E54-DDS.When the additive amount(by mass)of GO was less than 0.5%,the active group of GO could increase the crosslinking density of the modified system and improve the glass transition temperature(Tg)of the composites.However,when the additive amount of GO was greater than 0.8%,it would decrease the proportion of DDS in the structure of the solidified network,while the Tg of the composites decreased.Micromorphological analysis showed that GO/CF/E54-DDS prepreg had better infiltration effect than CF/E54-DDS,and the failure of the CF/E54-DDS composites mainly occurred along the interfaces between the CF and the resin matrix,and the CF had a smooth surface.In contrast,the failure of the GO/CF/E54-DDS mainly occurred in the interlaminar GO/E54-DDS region benefited by the close adhering of cured GO/E54-DDS onto the CF surfaces,indicating effectively improved interfacial property of the GO/CF/E54-DDS hybrid composites.Compression strength after impact(CAI)test indicated that GO enhanced the ability of GO/CF/E54-DDS composites to resist transverse crack and longitudinal crack growth,so that damage projection area and crack pit depth decreased,and the CAI improved.

参考文献/References:

[1] HU K S,KULKARNI D D,CHOI I,et al.Graphene-polymer nanocomposites for structural and functional applications[J].Progress in Polymer Science,2014,39(11):1934-1972.
[2] DU J H,CHENG H M.The fabrication,properties,and uses of graphene/polymer composites[J].Macromolecular Chemistry and Physics,2012,213(10/11):1060-1077.
[3] CAI W,PINER R D,STADERMANN F J,et al.Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide[J].Science,2008,321(5897):1815-1817.
[4] STANKOVICH S,DIKIN D A,PINER R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558-1565.
[5] WANG S,CHIA P J,CHUA L L,et al.Band-like transport in surface-functionalized highly solution-processable graphene nanosheets[J].Advanced Materials,2010,20(18):3440-3446.
[6] SHAH R,KAUSAR A,MUHAMMAD B,et al.Progression from graphene and graphene oxide to high performance polymer-based nanocomposite:a review[J].Polymer-Plastics Techndogy and Engineering,2015,54(2):173-183.
[7] WAN Y J,TANG L C,GONG L X,et al.Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J].Carbon,2014,69:467-480.
[8] WANG T Y,TSAI J L.Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites[J].Computational Materials Science,2016,122:272-280.
[9] 周宏,朴明昕,李芹,等.氧化石墨烯纳米片/环氧树脂复合材料的制备与性能[J].复合材料学报,2015,32(5):1309-1315.
[10] ZHOU T L,NAGAO S,SUGAHARA T,et al.Facile identification of the critical content of multi-layer graphene oxide for epoxy composite with optimal thermal properties[J].RSC Advances,2015,5(26):20376-20385.
[11] PATHAK A K,BORAH M,GUPTA A,et al.Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J].Composites Science and Technology,2016,135:28-38.
[12] LI Y,ZHAO Y,SUN J M,et al.Mechanical and electromagnetic interference shielding properties of carbon fiber/graphene nanosheets/epoxy composite[J].Polymer Composites,2016,37(8):2494-2502.
[13] WATSON G,STAROST K,BARI P,et al.Tensile and flexural properties of hybrid graphene oxide / epoxy carbon fibre reinforced composites[C]∥3rd International Conference on Structural Nano Composites.[S.l.]:IOP Publishing,2017:012009.doi:10.1088/1757-899X/195/1/012009.
[14] KOSTAGIANNAKOPOULOU C,LOUTAS T H,SOTIRIADIS G,et al.On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species[J].Composites Science & Technology,2015,118:217-225.
[15] ADAK N,CHHETRI S,MURMU N,et al.Effect of thermally reduced graphene oxide on mechanical properties of woven carbon fiber/epoxy composite[C]∥NCPCM 2017.[S.l.]:IOP Publishing,2018:012015.doi:10.1088/1757-899X/338/1/012015.
[16] HUMMERS W S,JR,OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
[17] American Society for Testing and Materials.Standard test method for glass transition temperature(DMA Tg)of polymer matrix composites by dynamic mechanical analysis(DMA): ASTM D 7028-07e1 [S].Philadelphia:American Society for Testing and Materials International,2007.
[18] American Society for Testing and Materials.Standard test method for compressive residual strength properties of damaged polymer matrix composite plates:ASTM D7137/D7137-17[S].West Conshohocken:American Society for Testing and Materials International,2017.
[19] 李桂林.环氧树脂与环氧涂料[M].北京:化学工业出版社,2003:126-129.
[20] 陈平,刘胜平,王德中.环氧树脂及其应用[M].北京:化学工业出版社,2014:52-54.
[21] 孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002:115-117.
[22] WANG X,JIN J,SONG M,et al.Effect of graphene oxide sheet size on the curing kinetics and thermal stability of epoxy resins[J].Materials Research Express,2016,3(10):105303.
[23] RYU S H,SIN J H,SHANMUGHARAJ A M.Study on the effect of hexamethylene diamine functionalized graphene oxide on the curing kinetics of epoxy nanocomposites[J].European Polymer Journal,2014,52(1):88-97.
[24] 胡玉明,吴良义.固化剂[M].北京:化学工业出版社,2004:9-14.
[25] QIU S L,WANG C S,WANG Y T,et al.Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin[J].Express Polymer Letters,2011,5(9):809-818.
[26] 仇士龙,王玉婷,王成双,等.环氧树脂/氧化石墨纳米复合物的等温固化行为研究[J].高分子学报,2012(1):25-32.
[27] SHEN X J,PEI X Q,FU S Y,et al.Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content[J].Polymer,2013,54(3):1234-1242.
[28] 李广宇,李子东,吉利,等.环氧胶黏剂与应用技术[M].北京:化学工业出版社,2007:138-140.
[29] BORTZ D R,HERAS E G,MARTIN-GULLON I.Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites[J].Macromolecules,2012,45(1):238-245.
[30] SONG W,GU A J,LIANG G Z,et al.Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J].Applied Surface Science,2011,257(9):4069-4074.
[31] 陈淙洁,张明,王春红,等.四种碳纤维表面理化特性研究[J].玻璃钢/复合材料,2012(增1):73-80.
[32] 李阳,肇研,刘刚,等.国产CCF300碳纤维及其NCF织物的性能[J].航空学报,2014,35(10):2889-2900.
[33] TANG Y H,YE L,ZHANG Z,et al.Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles:a review[J].Composites Science and Technology,2013,86(7):26-37.
[34] SRINIVASAN K,JACKSON W C,SMITH B T,et al.Characterization of damage modes in impacted thermoset and thermoplastic composites[J].Journal of Reinforced Plastics and Composites,1992,11(10):1111-1126.

备注/Memo

备注/Memo:
收稿日期:2018-06-08 录用日期:2018-08-19
基金项目:航空科学基金(2016ZF68011); 福建省科技创新平台建设计划(2014H2006); 福建省自然科学基金(2015J01222); 厦门大学石墨烯工业技术研究院项目(2014I2005)
*通信作者:xlhu@xmu.edu.cn
更新日期/Last Update: 1900-01-01