|本期目录/Table of Contents|

[1]洪巢升,刘芋秀,赵 仪*.受体分子侧基对非富勒烯受体和聚合物给体界面处激子解离速率的影响[J].厦门大学学报(自然科学版),2019,58(03):300-306.[doi:10.6043/j.issn.0438-0479.201805027]
 HONG Chaosheng,LIU Yuxiu,ZHAO Yi*.Effect of side group of the acceptor on exciton dissociation rate at the interface between non-fullerene acceptor and polymer electron donor[J].Journal of Xiamen University(Natural Science),2019,58(03):300-306.[doi:10.6043/j.issn.0438-0479.201805027]
点击复制

受体分子侧基对非富勒烯受体和聚合物给体界面处激子解离速率的影响(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
58卷
期数:
2019年03期
页码:
300-306
栏目:
研究论文
出版日期:
2019-05-28

文章信息/Info

Title:
Effect of side group of the acceptor on exciton dissociation rate at the interface between non-fullerene acceptor and polymer electron donor
文章编号:
0438-0479(2019)03-0300-07
作者:
洪巢升刘芋秀赵 仪*
厦门大学化学化工学院,福建 厦门 361005
Author(s):
HONG ChaoshengLIU YuxiuZHAO Yi*
College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
关键词:
电荷迁移 电子耦合 吸收光谱 电子受体 密度泛函理论
Keywords:
charge transfer electronic coupling absorption spectra electron acceptor density functional theory
分类号:
O 641
DOI:
10.6043/j.issn.0438-0479.201805027
文献标志码:
A
摘要:
以非富勒烯为受体的有机太阳能电池中,给体和受体分子可同时吸收可见光并各自产生光诱导的激子,这些激子的解离是决定太阳能电池效率的关键因素之一.因此,选取HXSC12分子为电子给体,6种具有不同侧基的1,8-萘酰亚胺小分子作为电子受体,利用Marcus公式和电子结构计算研究了给体和受体分子上激子在其构成界面上的解离过程,着重分析了受体分子侧基对两种激子的解离速率的影响.结果发现,给体和受体分子的吸收光频率互补,且对于效率较高的体系组合中两种分子上的激子解离速率基本具有相同量级,表明给体和受体在收集太阳能方面具有同等重要的作用.在受体中引入吸电子侧基后,可使得受体吸光强度增加,同时增加了给体-受体界面上激子解离的耦合强度和驱动力从而明显提高激子解离速率; 而引入给电子侧基后,受体吸光强度明显降低,也降低了激子解离的耦合强度,导致激子解离速率降低.该计算结果与实验观测一致,可为制备高效的有机太阳能电池提供新思路.
Abstract:
For non-fullerene organic solar cells,both electron donor and acceptor can absorb visible sunlight and thus generate photo-induced excitons,which is one of the key factors that influence the efficiency of organic solar cells.In this article,two kinds of exciton dissociation rates,which correspond to the excitons generated from donor(ED1)and acceptor(ED2),respectively,at the interfaces of organic solar cells were calculated for electron donor molecule HXSC12 and six kinds of 1,8-naphthalimides-based electron acceptor molecules by Marcus formula and electronic structure computation. This article is focused on the effect of side group on exciton dissociation rate.The results indicate that the absorption frequencies of HXSC12 and electron acceptors complement each other.Meanwhile,the dissociation rates of excitons from both ED1 and ED2 are almost in the same order of magnitude for the systems with high energy conversion efficiency,which means that electron donor and acceptor have the same impact on the collection of solar energy.If an electron-withdrawing side group is introduced into the backbone of electron acceptor,the intensity of the maximum absorption peak will increase,and the dissociation rate of excitons at the donor-acceptor interface will also increase because of greater coupling strength and driving force.However,the introducing of electron-donating side group to the acceptor will cause a decrease in the intensity of the maximum absorption peak and coupling strength,which results in a slower exciton dissociation rate.The results of this article are consistent with those of experiments and provide new insights in the preparation of high efficiency organic solar cells.

参考文献/References:

[1] LIANG Y,XU Z,XIA J,et al.For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J].Advanced Materials,2010,22(20):E135-E138.
[2] PEREZ M D,BOREK C,FORREST S R,et al.Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices[J].J Am Chem Soc,2009,131(26):9281-9286.
[3] BARAN D,KIRCHARTZ T,WHEELER S,et al.Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages[J].Energy & Environmental Science,2016,9(12):3783-3793.
[4] LIU X H,WANG H Q,LI Y R,et al.Regular organic solar cells with efficiency over 10% and promoted stability by ligand- and thermal annealing-free Al-doped ZnO cathode interlayer[J].Advanced Science,2017,4(8):1700053.
[5] LI W W,HENDRIKS K H,FURLAN A,et al.High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV[J].J Am Chem Soc,2015,137(6):2231-2234.
[6] DISTLER A,SAUERMANN T,EGELHAAF H J,et al.The effect of PCBM dimerization on the performance of bulk heterojunction solar cells[J].Advanced Energy Materials,2014,4(1):1300693.
[7] ZHAO W C,LI S S,YAO H F,et al.Molecular optimization enables over 13% efficiency in organic solar cells[J].J Am Chem Soc,2017,139(21):7148-7151.
[8] LIN Y Z,WANG J Y,ZHANG Z G,et al.An electron acceptor challenging fullerenes for efficient polymer solar cells[J].Advanced Materials,2015,27(7):1170-1174.
[9] JIANG W,LI Y,WANG Z H.Heteroarenes as high performance organic semiconductors[J].Chemical Society Reviews,2013,42(14):6113-6127.
[10] HE C,HOU J H.Advances in solution-processed all-small-molecule organic solar cells with non-fullerene electron acceptors[J].Acta Physico-Chimica Sinica,2018,34(11):1202-1210.
[11] LIN Y Z,WANG J Y,DAI S X,et al.A twisted dimeric perylene diimide electron acceptor for efficient organic solar cells[J].Advanced Energy Materials,2014,4(13):1400420.
[12] QIU B B,XUE L W,YANG Y K,et al.All-small-molecule nonfullerene organic solar cells with high fill factor and high efficiency over 10%[J].Chemistry of Materials,2017,29(17):7543-7553.
[13] ZHANG J C,ZHANG X J,XIAO H M,et al.1,8-naphthalimide-based planar small molecular acceptor for organic solar cells[J].ACS Applied Materials & Interfaces,2016,8(8):5475-5483.
[14] MARCUS R A.On the theory of oxidation-reduction reactions involving electron transfer.Ⅴ.Comparision and properties of electrochemical and chemical rate constants[J].The Journal of Physical Chemistry,1963,67(4):853-857.
[15] MARCUS R A.Chemical and electrochemical electron-transfer theory[J].Annual Review of Physical Chemistry,1964,15(1):155-196.
[16] MARCUS R A.On the theory of electron-transfer reactions.Ⅵ.Unified treatment for homogeneous and electrode reactions[J].The Journal of Chemical Physics,1965,43(2):679-701.
[17] CHENG X,WAN Q,WU Y,et al.Toward high open-circuit voltage by smart chain engineering in 2D-conjugated polymer for polymer solar cells[J].Solar Energy Materials and Solar Cells,2016,149:162-169.
[18] CUI C H,HE Z C,WU Y,et al.High-performance polymer solar cells based on a 2D-conjugated polymer with an alkylthio side-chain[J].Energy & Environ-mental Science,2016,9(3):885-891.
[19] SANTORO F,BARONE V,IMPROTA R.Can TD-DFT calculations accurately describe the excited states behavior of stacked nucleobases? The cytosine dimer as a test case[J].Journal of Computational Chemistry,2008,29(6):957-964.
[20] RUDBERG E,SALEK P,HELGAKER T,et al.Calculations of two-photon charge-transfer excitations using Coulomb-attenuated density-functional theory[J].The Journal of Chemical Physics,2005,123(18):184108.
[21] JAYAMURUGAN G,GISSELBRECHT J P,BOUDON C,et al.Expanding the chemical space for push-pull chromophores bynon-concerted [2+2] and [4+2] cycloadditions:access to a highlyfunctionalised 6,6-dicyanopentafulvene with an intense,low-energycharge-transfer band[J].Chemical Communications,2011,47(15):4520-4522.
[22] BADER R F W,CARROLL M T,CHEESEMAN J R,et al.Properties of atoms in molecules:atomic volumes[J].J Am Chem Soc,1987,109(26):7968-7979.
[23] BADER R F W,PRESTON H J T.Determination of the charge distribution of methane by a method of density constraints[J].Theoretica Chimica Acta,1970,17(5):384-395.
[24] FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 09 Rev.B.01[CP].Wallingford:Gaussian Inc.,2009.
[25] NELSEN S F,BLACKSTOCK S C,KIM Y.Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations[J].J Am Chem Soc,1987,109(3):677-682.
[26] SOLIMANNEJAD M,ALKORTA I,ELGUERO J.A comparative ab initio study of SF6…X- and CF4…X-complexes(X=H,F,Cl,CN,NC,N3 and NCO)[J].Journal of Molecular Structure:THEOCHEM,2007,819(1/2/3):136-141.
[27] VALEEV E F,COROPCEANU V,DA SILVA FILHO D A,et al.Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors[J].J Am Chem Soc,2006,128(30):9882-9886.
[28] REHM D,WELLER A.Kinetics of fluorescence quenching by electron and H-atom transfer[J].Israel Journal of Chemistry,1970,8(2):259-271.
[29] ZHANG W W,LIANG W Z,ZHAO Y.Non-Condon effect on charge transport in dithiophene-tetrathiafulvalene crystal[J].The Journal of Chemical Physics,2010,133(2):024501.

备注/Memo

备注/Memo:
收稿日期:2018-05-23 录用日期:2018-07-16
基金项目:国家自然科学基金(21573175,21773191,21833006)
*通信作者:yizhao@xmu.edu.cn
更新日期/Last Update: 1900-01-01