[1] RIVEST R,SHAMIR A,TAUMAN Y.How to leak a sercret[C]∥Proceedings of the ASIACRYPT 2001.Berlin:Springer-Verlag,2001:552-565.
[2] ZENG S,JIANG S,QIN Z.An efficient conditionally anonymous ring signature in the random oracle model[J].Theoretical Computer Science,2012,461:106-114.
[3] SHIM K A.An efficient ring signature scheme from pai-rings[J].Information Sciences,2015,300:63-69.
[4] BENDER A,KATZ J,MORSELLI R.Ring signatures:stronger definitions,and construction without random oracles[J].Journal of Cryptology,2009,22(1):114-138.
[5] AJTAI M.Generating hard instances of lattice problems(extended abstract)[C]∥STOC.Philadelphia:ACM,1996:99-108
[6] SHOR P W.Polynomial-time algorithms from prime factorization and discrete logarithms on a quantum computer[J].SIAM Journal on Computing,1997,26(5):1484-1509.
[7] DWORK C.A public-key cryptosystem with worst-case and/average-case equivalence[C]∥Proceeding of Twenty-ninth ACM Symposium on Theory of Computing.[S.l.]:ACM,1997:284-293.
[8] MICCIANCIO D,ROSEN O.Worst-case to average-case reductions based on Gaussian measures[J].SIAM Journal on Computing,2007,37:267-302.
[9] ALWEN J,PEIKERT C.Generating shorter bases for hard random lattices[J].Theory of Computing Systems,2011,48(3):535-553.
[10] CASH D,HOFHEINZ D,KILTZ D,et al.Bonsai trees,or how to delegate a lattices basis[J].Eurocrypt,2010,6110:523-552.
[11] WANG J,SUN B.Ring signature schemes from lattice basis delegation[J].Lecture Notes in Computer Science,2011,7043:15-28.
[12] NOH G,CHUNJ Y,JEONG I R.Strongly unforgeable ring signature scheme from lattices in the standard model[J].Journal of Applied Mathematics,2014(2014):1-12.
[13] GENTRY C,PEIKERT C,VAIKUNTANATHAN V.Trapdoors for hard lattices and new cryptographic constructions[C]∥Proceedings of the 40th Annual ACM Symposium on the Theory of computing(STOC’08).[S.l.]:ACM,2008:197-206.
[14] MELCHOR C A,BETTAIEB S,BOYEN X,et al.Adapting Lyubashevsky’s signature schemes to ring signature setting[J].Progress in Cryptology,2013,7918:1-25.
[15] MICCIANCIO D,PEIKERT C.Trapdoors for lattices:simpler,tighter,faster,smaller[J].Lecture Notes in Computer Science,2012,7237:700-718.