|本期目录/Table of Contents|

[1]热娜·艾合买提,张 娟,李 伟,等.一个基于格的环签名方案的改进[J].厦门大学学报(自然科学版),2018,57(02):238-242.[doi:10.6043/j.issn.0438-0479.201705013]
 RENA Ehmet,ZHANG Juan,LI Wei,et al.An Improvement of a Ring Signature Scheme Based on Lattices[J].Journal of Xiamen University(Natural Science),2018,57(02):238-242.[doi:10.6043/j.issn.0438-0479.201705013]
点击复制

一个基于格的环签名方案的改进(PDF)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年02期
页码:
238-242
栏目:
研究论文
出版日期:
2018-03-31

文章信息/Info

Title:
An Improvement of a Ring Signature Scheme Based on Lattices
文章编号:
0438-0479(2018)02-0238-05
作者:
热娜·艾合买提12张 娟1李 伟1曾吉文12*
1.厦门大学数学科学学院,福建 厦门 361005; 2.新疆师范大学数学科学学院,新疆 乌鲁木齐 830054
Author(s):
RENA Ehmet12ZHANG Juan1LI Wei1ZENG Jiwen12*
1.School of Mathematical Sciences,Xiamen University,Xiamen 361005,China; 2.Scool of Mathematical Sciences,Xinjiang Normal University,Urumqi 830054,China
关键词:
环签名 不可伪造 强陷门
Keywords:
ring signature lattice unforgeability strong trapdoor
分类号:
TP 309
DOI:
10.6043/j.issn.0438-0479.201705013
文献标志码:
A
摘要:
针对Wang等提出的基于格中困难问题的环签名方案不满足不可伪造性的问题,提出了一种改进的环签名方案.该方案在随机谕言模型下满足全密钥暴露下的匿名性和内部攻击下的不可伪造性.而且使用一种强陷门生成算法,保证了新的签名方案简单、高效且容易实施.
Abstract:
Wang has proposed a ring signature scheme based on difficult problem in lattices,but it does not satisfy unforgeability against insider corruption.Hereby we present a ring signature scheme which is anonymous against full key exposure and unforgeable against insider corruption in the random oracle model.In our new signature schemes,we use strong trapdoor generation algorithms.Consequently,it is simple and efficient for proposed algorithms to be implemented.

参考文献/References:

[1] RIVEST R,SHAMIR A,TAUMAN Y.How to leak a sercret[C]∥Proceedings of the ASIACRYPT 2001.Berlin:Springer-Verlag,2001:552-565.
[2] ZENG S,JIANG S,QIN Z.An efficient conditionally anonymous ring signature in the random oracle model[J].Theoretical Computer Science,2012,461:106-114.
[3] SHIM K A.An efficient ring signature scheme from pai-rings[J].Information Sciences,2015,300:63-69.
[4] BENDER A,KATZ J,MORSELLI R.Ring signatures:stronger definitions,and construction without random oracles[J].Journal of Cryptology,2009,22(1):114-138.
[5] AJTAI M.Generating hard instances of lattice problems(extended abstract)[C]∥STOC.Philadelphia:ACM,1996:99-108
[6] SHOR P W.Polynomial-time algorithms from prime factorization and discrete logarithms on a quantum computer[J].SIAM Journal on Computing,1997,26(5):1484-1509.
[7] DWORK C.A public-key cryptosystem with worst-case and/average-case equivalence[C]∥Proceeding of Twenty-ninth ACM Symposium on Theory of Computing.[S.l.]:ACM,1997:284-293.
[8] MICCIANCIO D,ROSEN O.Worst-case to average-case reductions based on Gaussian measures[J].SIAM Journal on Computing,2007,37:267-302.
[9] ALWEN J,PEIKERT C.Generating shorter bases for hard random lattices[J].Theory of Computing Systems,2011,48(3):535-553.
[10] CASH D,HOFHEINZ D,KILTZ D,et al.Bonsai trees,or how to delegate a lattices basis[J].Eurocrypt,2010,6110:523-552.
[11] WANG J,SUN B.Ring signature schemes from lattice basis delegation[J].Lecture Notes in Computer Science,2011,7043:15-28.
[12] NOH G,CHUNJ Y,JEONG I R.Strongly unforgeable ring signature scheme from lattices in the standard model[J].Journal of Applied Mathematics,2014(2014):1-12.
[13] GENTRY C,PEIKERT C,VAIKUNTANATHAN V.Trapdoors for hard lattices and new cryptographic constructions[C]∥Proceedings of the 40th Annual ACM Symposium on the Theory of computing(STOC’08).[S.l.]:ACM,2008:197-206.
[14] MELCHOR C A,BETTAIEB S,BOYEN X,et al.Adapting Lyubashevsky’s signature schemes to ring signature setting[J].Progress in Cryptology,2013,7918:1-25.
[15] MICCIANCIO D,PEIKERT C.Trapdoors for lattices:simpler,tighter,faster,smaller[J].Lecture Notes in Computer Science,2012,7237:700-718.

备注/Memo

备注/Memo:
收稿日期:2017-05-08 录用日期:2017-03-12
基金项目:国家自然科学基金(11261060)
*通信作者:jwzeng@xmu.edu.cn
引文格式:热娜·艾合买提,张娟,李伟,等.一个基于格的环签名方案的改进[J].厦门大学学报(自然科学版),2018,57(2):238-242.
Citation:RE N,ZHANG J,LI W,et al.An improvement of a ring signature scheme based on lattices[J].J Xiamen Univ Nat Sci,2018,57(2):238-242.(in Chinese)
更新日期/Last Update: 1900-01-01