|本期目录/Table of Contents|

[1]袁 飞.一类多项式特征值问题的向后误差分析及应用[J].厦门大学学报(自然科学版),2018,57(02):233-237.[doi:10.6043/j.issn.0438-0479.201709005]
 YUAN Fei.Backward Error Analyses and Application for a Type of Polynomial Eigenvalue Problems[J].Journal of Xiamen University(Natural Science),2018,57(02):233-237.[doi:10.6043/j.issn.0438-0479.201709005]
点击复制

一类多项式特征值问题的向后误差分析及应用(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年02期
页码:
233-237
栏目:
研究论文
出版日期:
2018-03-31

文章信息/Info

Title:
Backward Error Analyses and Application for a Type of Polynomial Eigenvalue Problems
文章编号:
0438-0479(2018)02-0233-05
作者:
袁 飞
厦门大学嘉庚学院信息科学与技术学院,福建 漳州 363105
Author(s):
YUAN Fei
School of Information Science & Technology,Xiamen University Tan Kah Kee College,Zhangzhou 363105,China
关键词:
向后误差 多项式特征值问题 振动分析 二次特征值问题
Keywords:
backward error polynomial eigenvalue problem vibration analysis quadratic eigenvalue problem
分类号:
O 241.7
DOI:
10.6043/j.issn.0438-0479.201709005
文献标志码:
A
摘要:
给出了一类形如(λkATlA)z=0(A为稀疏矩阵)的矩阵方程的多项式特征值问题向后误差分析.并通过高速列车的振动分析中的一类二次特征值问题(λ2AT+λQ+A)z=0的例子,应用该方法讨论此类二次特征值问题的向后误差.
Abstract:
This article will give backward errors to polynomial eigenvalue problems like(λkATlA)z=0),where A is a sparse matrix.For example,in studying the vibration of fast trains,we encounter a palindromic quadratic eigenvalue problem(QEP)λ2AT+λQ+A)z=0.We will discuss the backward error for this problem with the new method in this article.

参考文献/References:

[1] TISSEUR F.Backward error and condition of polynomial eigenvalue problems[J].Linear Algebra and Its Applications,2000,309:339-361.
[2] RIGAL J L,GACHES J.On the compatibility of a given solution with the data of a linear system[J].Journal of the ACM,1967,14(3):543-548.
[3] FRAYSSE V,TOUMAZOU V.A note on the normwise perturbation theory for the regular generalized eigenpro-blem[J].Numerical Linear Algebra with Applications,1998,5(1):1-10.
[4] HIGHAM D J,HIGHAM N J.Structured backward error and condition of generalized eigenvalue problems[J].SIAM Journal on Matrix Analysis and Applications,1998,20(2):493-512.
[5] LANCASTER P,SNEDDON I N,STARK M,et al.Lambda-matrices and vibrating systems[M].Oxford:Pergamon Press,1966:187-190.
[6] DUFFIN R J.A minimax theory for overdamped networks[J].J Rat Mech Anal,1954,4(2):221-233.
[7] STEWART G W,SUN J.Matrix perturbation theory[M].London:Academic Press,1990:1-94.
[8] MACKEY D S,MACKEY N,MEHL C,et al.Numerical methods for palindromic eigenvalue problems:computing the anti-triangular schur form[J].Numerical Linear Algebra with Applications,2009,16(1):63-86.
[9] GANDER W,GOLUB G H,VON MATT U.A constrained eigenvalue problem[J].Linear Algebra and Its Applications,1989,114/115:815-839.
[10] CLOUGH R W,MOJTAHEDI S.Earthquake response analysis considering non-proportional damping[J].Earthquake Engineering & Structural Dynamics,1976,4(5):489-496.
[11] KOMZSIK L.Implicit computational solution of genera-lized quadratic eigenvalue problems[J].Finite Elements in Analysis & Design,2001,37(10):799-810.
[12] SMITH H A,SINGH R K,SORENSEN D C.Formulation and solution of the non-linear,damped eigenvalue problem for skeletal systems[J].International Journal for Numerical Methods in Engineering,1995,38(18):3071-3085.
[13] ZHENG Z C,REN G X,WANG W J.A reduction method for large scale unsymmetric eigenvalue problems in structural dynamics[J].J Sound and Vibration,1997,199(2):253-268.
[14] KOMZSIK L.Implicit computational solution of genera-lized quadratic eigenvalue problems[M].Manuscript:the MacNeal-Schwendler Corporation,1998:56-72.
[15] SMITH H A,SINGH R K,SORENSEN D C.Formulation and solution of the non-linear,damped eigenvalue problem for skeletal systems[J].International Journal for Numerical Methods in Engineering,1995,38(18):3071-3085
[16] IPSEN I C F.Accurate eigenvalues for fast trains[J].SIAM News,2004,37(9):1-2.
[17] MACKEY D S,MACKEY N,MEHL C,et al.Structured polynomial eigenvalue problems:good vibrations from good linearizations[J].SIAM Journal on Matrix Analysis and Applications,2006,28(4):1029-1051.
[18] CHU E K W,HWANG T M,LIN W W,et al.Vibration of fast trains,palindromic eigenvalue problems and structure-preserving doubling algorithms[J].Journal of Computational and Applied Mathematics,2008,219(1):237-252.
[19] HUANG T M,LIN W W,QIAN J.Structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration of fast trains[J].SIAM Journal on Matrix Analysis and Applications,2008,30(4):1566-1592.
[20] KRESSNER D,SCHR?DER C,WATKINS D S.Implicit QR algorithms for palindromic and even eigenvalue problems[J].Numerical Algorithms,2009,51(2):209-238.
[21] LANCASTER P,PRELLS U,RODMAN L.Canonical structures for palindromic matrix polynomials[J].Oper Matrices,2007,1(4):469-489.
[22] LI R C,LIN W W,WANG C S.Structured backward error for palindromic polynomial eigenvalue problems[J].Numerische Mathematik,2010,116(1):95-122.
[23] GUO C H,LIN W W.Solving a structured quadratic eigenvalue problem by a structure-preserving doubling algorithm[J].SIAM Journal on Matrix Analysis and Applications,2010,31(5):2784-2801.
[24] LU L,YUAN F,LI R C.A new look at the doubling algorithm for a structured palindromic quadratic eigenvalue problem[J].Numerical Linear Algebra with Applications,2015,22:393-409.
[25] LU L,YUAN F,LI R C.An improved structure-preserving doubling algorithm for a structured palindromic quadratic eigenvalue problem[R].Arlington,UT:University of Texas at Arlington,2014.
[26] 袁飞,卢琳璋,李仁仓.一类二次特征值问题的向后误差分析[J].厦门大学学报(自然科学版),2016,55(1):97-102.
[27] PENROSE R.A generalized inverse for matrices[J].Mathematical Proceedings of the Cambridge Philosophical Society,1955,51(3):406-413.

备注/Memo

备注/Memo:
收稿日期:2017-09-07 录用日期:2018-03-12
*通信作者:ranma01@163.com
引文格式:袁飞.一类多项式特征值问题的向后误差分析及应用[J].厦门大学学报(自然科学版),2018,57(2):233-237.
Citation:YUAN F.Backward error analysis and application for a type of polynomial eigenvalue problems[J].J Xiamen Univ Nat Sci,2018,57(2):233-237.(in Chinese)
更新日期/Last Update: 1900-01-01