|本期目录/Table of Contents|

[1]林志忠,叶志云,林圣彩,等.单磷酸腺苷激活的蛋白激酶(AMPK)调控机制的研究进展[J].厦门大学学报(自然科学版),2018,57(02):149-156.[doi:10.6043/j.issn.0438-0479.201709035]
 LIN Zhizhong,YE Zhiyun,LIN Shengcai,et al.Research Progresses of AMP-activated Protein Kinase(AMPK)Regulation Mechanism[J].Journal of Xiamen University(Natural Science),2018,57(02):149-156.[doi:10.6043/j.issn.0438-0479.201709035]
点击复制

单磷酸腺苷激活的蛋白激酶(AMPK)调控机制的研究进展(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
57卷
期数:
2018年02期
页码:
149-156
栏目:
综述
出版日期:
2018-03-31

文章信息/Info

Title:
Research Progresses of AMP-activated Protein Kinase(AMPK)Regulation Mechanism
文章编号:
0438-0479(2018)02-0149-08
作者:
林志忠叶志云林圣彩林舒勇*
厦门大学生命科学学院,福建 厦门 361102
Author(s):
LIN ZhizhongYE ZhiyunLIN ShengcaiLIN Shuyong*
School of Life Sciences,Xiamen University,Xiamen 361102,China
关键词:
能量稳态 单磷酸腺苷激活的蛋白激酶 葡萄糖感应
Keywords:
energy homeostasis AMP-activated protein kinase(AMPK) glucose sensing
分类号:
Q 591
DOI:
10.6043/j.issn.0438-0479.201709035
文献标志码:
A
摘要:
代谢是细胞和有机体最基本、最重要的活动之一.细胞和有机体通过感应系统实时监测代谢过程中的物质和能量状态,并不断地通过错综复杂的代谢调控途径来维持其稳态.代谢调控一旦出现紊乱,机体代谢就会发生异变,从而导致如糖尿病、肥胖、心血管疾病乃至肿瘤等多种人类重大疾病的发生,并影响发育、生长、繁殖、衰老等生命过程.单磷酸腺苷激活的蛋白激酶(AMPK)作为在代谢调控中起核心作用的激酶,自其被发现以来一直是研究的热点.对AMPK调控机制的深入研究为揭示代谢性疾病的发生和发展机制、探索其治疗和预防的策略提供了重要的新思路.围绕近年来国内外AMPK研究领域取得的进展,重点阐述AMPK在体内的激活机制以及本课题组在该领域中的一系列重要成果.
Abstract:
Metabolism is one of the fundamental and vitally important activities for all the living cells and organisms.By means of developing multiple internal sensing systems,the organisms are able to continuously monitor their energy state during metabolic process and maintain the energy homeostasis through several intricate regulation pathways.In human bodies,the failure of metabolic process can result in many diseases,including diabetes,obesity,cardiovascular disorders and even cancers.AMP-activated protein kinase(AMPK)is one of the master controllers of metabolism.Understanding the regulation mechanisms of AMPK can greatly allow us to reveal the development of metabolic diseases and explore relevant treatment strategies.This review will focus on some recent findings of the regulation of AMPK,as well as a series of important findings by our research group.

参考文献/References:

[1] GIL G,SITGES M,BOVé J,et al.Phosphorylation-dephosphorylation of rat liver 3-hydroxy 3-methylglutaryl coenzyme A reductase associated with changes in activity[J].FEBS Lett,1980,110(2):195-199.
[2] HARWOOD H J,JR,BRANDT K G,RODWELL V W.Allosteric activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by nucleoside diphosphates[J].J Biol Chem,1984,259(5):2810-2815.
[3] CARLSON C A,KIM K H.Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation[J].J Biol Chem,1973,248(1):378-380.
[4] CARLING D,ZAMMIT V A,HARDIE D G.A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J].FEBS Lett,1987,223(2):217-222.
[5] CARLING D,CLARKE P R,ZAMMIT V A,et al.Purification and characterization of the AMP-activated protein kinase.Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities[J].Eur J Biochem,1989,186(1/2):129-136.
[6] GAUTHIER M S,MIYOSHI H,SOUZA S C,et al.AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte:potential mechanism and physiological relevance[J].J Biol Chem,2008,83(24):16514-16524.
[7] SAVAGE D B,CHOI C S,SAMUEL V T,et al.Reversal of diet-induced hepatic steatosis and hepatic insulin resis-tance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2[J].J Clin Invest,2006,116(3):817-824.
[8] SMITH B K,MARCINKO K,DESJARDINS E M,et al.Treatment of nonalcoholic fatty liver disease:role of AMPK[J].Am J Physiol Endocrinol Metab,2016,311(4):E730-E740.
[9] LI Y,XU S,MIHAYLOVA M M,et al.AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resis-tant mice[J].Cell Metab,2011,13(4):376-388.
[10] MERRILL G F,KURTH E J,HARDIE D G,et al.AICA riboside increases AMP-activated protein kinase,fatty acid oxidation,and glucose uptake in rat muscle[J].Am J Physiol,1997,273(1):E1107-E1112.
[11] O’NEILL H M,MAARBJERG S J,CRANE J D,et al.AMP-activated protein kinase(AMPK)β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise[J].Proc Natl AcadSci USA,2011,108(38):16092-16097.
[12] SALT I P,JOHNSON G,ASHCROFT S J,et al.AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells,and may regulate insulin release[J].Biochem J,1998,335(3):533-539.
[13] INOKI K,ZHU T,GUAN K L.TSC2 mediates cellular energy response to control cell growth and survival[J].Cell,2003,115(5):577-590.
[14] GWINN D M,SHACKELFORD D B,EGAN D F,et al.AMPK phosphorylation of raptor mediates a metabolic checkpoint[J].Mol Cell,2008,30(2):214-226.
[15] EGAN D F,SHACKELFORD D B,MIHAYLOVA M M,et al.Phosphorylation of ULK1(hATG1)by AMP-activated protein kinase connects energy sensing to mitophagy[J].Science,2011,331(6016):456-461.
[16] WINDER W W,HARDIE D G.AMP-activated protein kinase,a metabolic master switch:possible roles in type 2 diabetes[J].Am J Physiol,1999,277(1):E1-E10.
[17] PANG T,XIONG B,LI J Y,et al.Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits[J].J Biol Chem,2007,282(1):495-506.
[18] CHEN L,JIAO Z H,ZHENG L S,et al.Structural insight into the autoinhibition mechanism of AMP-activated protein kinase[J].Nature,2009,459(7250):1146-1149.
[19] XIAO B,HEATH R,SAIU P,et al.Structural basis for AMP binding to mammalian AMP-activated protein kinase[J].Nature,2007,449(7161):496-500.
[20] XIN F J,WANG J,ZHAO R Q,et al.Coordinated regulation of AMPK activity by multiple elements in the α-subunit[J].Cell Res,2013,23(10):1237-1240.
[21] OAKHILL J S,CHEN Z P,SCOTT J W,et al.β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase(AMPK)[J].Proc Natl Acad Sci USA,2010,107(45):19237-19241.
[22] GOWANS G J,HAWLEY S A,ROSS F A,et al.AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation[J].Cell Metab,2013,18(4):556-566.
[23] CARLING D,THORNTON C,WOODS A,et al.AMP-activated protein kinase:new regulation,new roles?[J].Biochem J,2012,445(1):11-27.
[24] OAKHILL J S,SCOTT J W,KEMP B E.AMPK functions as an adenylate charge-regulated protein kinase[J].Trends in Endocrinology and Metabolism,2012,23(3):125-132.
[25] CARLING D,MAYER F V,SANDERS M J,et al.AMP-activated protein kinase:nature’s energy sensor[J].Nat Chem Biol,2011,7(8):512-518.
[26] MILAN D,JEON J T,LOOFT C,et al.A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle[J].Science,2000,288(5469):1248-1251.
[27] CHEUNG P C F,SALT I P,DAVIES S P,et al.Characterization of AMP-activated protein kinase g-subunit isoforms and their role in AMP binding[J].Biochem J,2000,346(3):659-669.
[28] HAWLEY S A,BOUDEAU J,REID J L,et al.Complexes between the LKB1 tumor suppressor,STRAD α/β and MO25 α/β are upstream kinases in the AMP-activated protein kinase cascade[J].J Biol,2003,2(4):28.
[29] HAWLEY S A,PAN D A,MUSTARD K J,et al.Calmo-dulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase[J].Cell Metab,2005,2(1):9-19.
[30] WOODS A,DICKERSON K,HEATH R,et al.Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells[J].Cell Metab,2005,2(1):21-33.
[31] WOODS A,JOHNSTONE S R,DICKERSON K,et al.LKB1 is the upstream kinase in the AMP-activated protein kinase cascade[J].Curr Biol,2003,13(22):2004-2008.
[32] SUTER M,RIEK U,TUERK R,et al.Dissecting the role of 5’-AMP for allosteric stimulation,activation,and deactivation of AMP-activated protein kinase[J].J Biol Chem,2006,281(43):32207-32216.
[33] HURLEY R L,ANDERSON K A,FRANZONE J M,et al.The Ca2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases[J].J Biol Chem,2005,280(32):29060-29066.
[34] XIAO B,SANDERS M J,UNDERWOOD E,et al.Structure of mammalian AMPK and its regulation by ADP[J].Nature,2011,472(7342):230-233.
[35] OAKHILL J S,STEEL R,CHEN Z P,et al.AMPK is a direct adenylate charge-regulated protein kinase[J].Science,2011,332(6036):1433-1440.
[36] ZENG L,FAGOTTO F,ZHANG T,et al.The mouse Fused locus encodes Axin,an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation[J].Cell,1997,90(1):181-192.
[37] RUI Y,XU Z,LIN S,et al.Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation[J].EMBO J,2004,23(23):4583-4594.
[38] LI Q,WANG X,WU X,et al.Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death[J].Cancer Res,2007,67(1):66-74.
[39] LI Q,LIN S,WANG X,et al.Axin determines cell fate by controlling the p53 activation threshold after DNA damage[J].Nat Cell Biol,2009,11(9):1128-1134.
[40] RUI Y,XU Z,XIONG B,et al.A β-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by aida[J].Dev Cell,2007,13(2):268-282.
[41] ZHANG Y L,GUO H,ZHANG C S,et al.AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation[J].Cell Metab,2013,18(4):546-555.
[42] ZHANG C S,JIANG B,LI M,et al.The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1,acting as a switch between cata-bolism and anabolism[J].Cell Metab,2014,20(3):526-540.
[43] HARDIE D G.AMPK:sensing energy while talking to other signaling pathways[J].Cell Metab,2014,20(6):939-952.
[44] HAWLEY S A,FULLERTON M D,ROSS F A,et al.The ancient drug salicylate directly activates AMP-activated protein kinase[J].Science,2012,336(6083):918-922.
[45] HARDIE D G.AMP-activated protein kinase:maintaining energy homeostasisat the cellular and whole-body levels[J].Annu Rev Nutr,2014,34(34):31-55.
[46] GADALLA A E,PEARSON T,CURRIE A J,et al.AICA riboside both activates AMP activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus[J].J Neurochem,2004,88(5):1272-1282.
[47] GO’MEZ-GALENO J E,DANG Q,NGUYEN T H,et al.A potent and selective AMPK activator that inhibits de novo lipogenesis[J].ACS Med Chem Lett,2010,1(9):478-482.
[48] COOL B,ZINKER B,CHIOU W,et al.Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome[J].Cell Metab,2006,3(6):403-416.
[49] XIAO B,SANDERS M J,CARMENA D,et al.Structural basis of AMPK regulation by small molecule activators[J].Nat Commun,2013,4(1):3017.
[50] ZADRA G,PHOTOPOULOS C,TYEKUCHEVA S,et al.A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis[J].EMBO Mol Med,2014,6(4):519-538.
[51] FORETZ M,GUIGAS B,BERTRAND L,et al.Metformin:from mechanisms of action to therapies[J].Cell Metab,2014,20(6):953-66.
[52] ZHANG C S,LI M,MA T,et al.Metformin activates AMPK through the lysosomal pathway[J].Cell Metab,2016,24(4):521-522.
[53] HARDIE D G,CARLING D.The AMP-activated protein kinase:fuel gauge of the mammalian cell?[J].Eur J Biochem,1997,246(2):259-273.
[54] MARCHEVA B,RAMSEY K M,BUHR E D,et al.Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J].Nature,2010,466(7306):627-631.
[55] JORDAN S D,LAMIA K A.AMPK at the crossroads of circadian clocks and metabolism[J].Mol Cell Endocrinol,2013,366(2):163-169.
[56] CRAMER F B,WOODWARD G E.2-Desoxy-D-glucose as an antagonist of glucose in yeast fermentation[J].Journal of the Franklin Institute,1952,253(4):354-360.
[57] ZHANG D,LI J,WANG F,et al.2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy[J].Cancer Lett,2014,355(2):176-183.
[58] ROWE I,CHIARAVALLI M,MANNELLA V,et al.Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy[J].Nat Med,2013,19(4):488-493.
[59] ZHANG C S,HAWLEY S A,ZONG Y,et al.Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK[J].Nature,2017,548(7665):112-116.
[60] VIOLLET B,HORMAN S,LECLERC J,et al.AMPK inhibition in health and disease[J].Crit Rev Biochem Mol Biol,2010,45(4):276-295.
[61] WU Y,SONG P,XU J,et al.Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase[J].J Biol Chem,2007,282(13):9777-9788.
[62] TREEBAK J T,GLUND S,DESHMUKH A,et al.AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits[J].Diabetes,2006,55(7):2051-2058.
[63] MCGEE S L,VAN DENDEREN B J,HOWLETT K F,et al.AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5[J].Diabetes,2008,57(4):860-867.
[64] HUANG S,CZECH M P.The GLUT4 glucose transpor-ter[J].Cell Metab,2007,5(4):237-252.
[65] KOO S H,FLECHNER L,QI L,et al.The CREB co-activator TORC2 is a key regulator of fasting glucose metabolism[J].Nature,2005,437(7062):1109-1111.
[66] MIHAYLOVA M M,VASQUEZ D S,RAVNSKJAER K,et al.Class Ⅱa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis[J].Cell,2011,145(4):607-621.
[67] WANG B,MOYA N,NIESSEN S,et al.A hormone-dependent module regulating energy balance[J].Cell,2011,145(4):596-606.
[68] PAVLOVA N N,THOMPSON C B.The emerging hallmarks of cancer metabolism[J].Cell Metab,2016,23(1):27-47.
[69] CAIRNS R A,HARRIS I S,MAK T W.Regulation of cancer cell metabolism[J].Nat Rev Cancer,2011,11(2):85-95.
[70] INOKI K,KIM J,GUAN K L.AMPK and mTOR in cellular energy homeostasis and drug targets[J].Annu Rev Pharmacol Toxicol,2012,52(1):381-400.
[71] BUDANOV A V,KARIN M.p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J].Cell,2008,134(3):451-460.
[72] ADAMOVICH Y,ADLER J,MELTSER V,et al.AMPK couples p73 with p53 in cell fate decision[J].Cell Death Differ,2014,21(9):1451-1459.
[73] JONES R G,PLAS D R,KUBEK S,et al.AMP-activated protein kinase induces a p53-dependent metabolic checkpoint[J].Mol Cell,2005,18(3):283-293.
[74] SHACKELFORD D B,SHAW R J.The LKB1-AMPK pathway:metabolism and growth control in tumour suppression[J].Nat Rev Cancer,2009,9(8):563-575.
[75] PINEDA C T,RAMANATHAN S,FON TACER K,et al.Degradation of AMPK by a cancer-specific ubiquitin ligase[J].Cell,2015,160(4):715-728.
[76] VILA I K,YAO Y,KIM G,et al.A UBE2O-AMPKα2 axis that promotes tumor initiation and progression offers opportunities for therapy[J].Cancer Cell,2017,31(2):208-224.
[77] O’NEILL L A,HARDIE D G.Metabolism of inflammation limited by AMPK and pseudo-starvation[J].Nature,2013,493(7432):346-355.

备注/Memo

备注/Memo:
收稿日期:2017-09-30 录用日期:2017-12-28
基金项目:国家自然科学基金(31370744)
*通信作者:linsy@xmu.edu.cn
引文格式:林志忠,叶志云,林圣彩,等.单磷酸腺苷激活的蛋白激酶(AMPK)调控机制的研究进展[J].厦门大学学报(自然科学版),2018,57(2):149-156.
Citation:LIN Z Z,YE Z Y,LIN S C,et al.Research progresses of AMP-activated protein kinase(AMPK)regulation mechanism[J].J Xiamen Univ Nat Sci,2018,57(2):149-156.(in Chinese)
更新日期/Last Update: 1900-01-01