|本期目录/Table of Contents|

[1]黄江茵*,赵 晶.无稳态非线性系统线性变参数模型辨识[J].厦门大学学报(自然科学版),2017,56(04):560-566.[doi:10.6043/j.issn.0438-0479.201608005]
 HUANG Jiangyin*,ZHAO Jing.Linear Parameter Varying Model Identification of Nonlinear Systems Without Steady State[J].Journal of Xiamen University(Natural Science),2017,56(04):560-566.[doi:10.6043/j.issn.0438-0479.201608005]
点击复制

无稳态非线性系统线性变参数模型辨识(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
56卷
期数:
2017年04期
页码:
560-566
栏目:
研究论文
出版日期:
2017-07-26

文章信息/Info

Title:
Linear Parameter Varying Model Identification of Nonlinear Systems Without Steady State
文章编号:
0438-0479(2017)04-0560-07
作者:
黄江茵*赵 晶
厦门理工学院电气工程与自动化学院,福建 厦门 361024
Author(s):
HUANG Jiangyin*ZHAO Jing
School of Electrical Engineering and Automation,Xiamen University of Technology,Xiamen 361024,China
关键词:
非线性系统 无稳态 线性变参数模型 循环流化床锅炉
Keywords:
nonlinear systems non-steady state linear parameter varying(LPV)model circulation fluidized bed boiler
分类号:
TP 273
DOI:
10.6043/j.issn.0438-0479.201608005
文献标志码:
A
摘要:
针对无稳态非线性系统,提出2种线性变参数(linear parameter varying,LPV)模型辨识方法.对于线性权重LPV模型,结合高斯牛顿法和最小二乘法对局部线性模型的参数寻优; 对于高斯权重LPV模型,采用Narendra-Gallman算法并根据参数与优化目标之间的关系,将参数分为线性部分和非线性部分并进行交替迭代.通过对循环流化床锅炉实际工业系统的建模结果和实测结果对比验证了所提算法的有效性.与带稳态LPV模型相比,3个主要输出蒸汽压力、蒸汽温度和炉膛温度均获得较好的输出拟合效果,最优匹配率分别提高52.8%,21.1%和32.2%以上.验证了所提算法在复杂工业非线性对象建模上的有效性和实用性.
Abstract:
Two kinds of identification methods of the linear parameter varying(LPV)models for the nonlinear systems without steady states are both proposed in this paper.For the LPV model with linear weights,because parameters only exist in the local linear models,Gauss-Newton method and least square method are combined to estimate all parameters.For the LPV model with Gaussian weights,parameters exist in both weighting functions and local linear models.Narendra-Gallman method is used to estimate parameters.In the method,all parameters are divided into linear and nonlinear parts according to the relationship between them and optimization objectives.Then these two parts are estimated using the alternating iterative method.The proposed algorithm is validated by identifying an industrial circulation fluidized bed boiler.The outputs of the LPV model and real process of three main outputs:steam pressure,steam temperature and furnace temperature are analyzed and compared.Best fittings of these outputs are increased by 52.8%,21.1% and 32.2% respectively,confirming the validity and practicability of the algorithm in the identification field of complex nonlinear industrial processes.

参考文献/References:

[1] CHEN L,TULSYAN A,HUANG B,et al.Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm[J].Journal of Process Control,2013,23(10):1480-1496.
[2] LJUNG L.Prediction error estimation methods[J].Circuits Systems & Signal Processing,2001,21(1):11-21.
[3] BARHAM R H,DRANE W.An algorithm for least squares estimation of nonlinear parameters when some of the parameters are linear[J].Technometrics,1972,14(3):757-766.
[4] HOPFIELD J J.Neural networks and physical systems with emergent collective computational abilities[J].Proceedings of the National Academy of Sciences of the United States of America,1982,79(8):2554-2558.
[5] SMOLAA J,SCH?LKOPF B.A tutorial on support vector regression[J].Statistics & Computing,2004,14(3):199-222.
[6] FRITSCHE C,OZKAN E,GUSTAFSSON F.Online EM algorithm for jump Markov systems[C]∥IEEE 15th International Conference on Information Fusion.Singapore:IEEE,2012:1941-1946.
[7] BANERJEE A,ARKUN Y,OGUNNAIKE B,et al.Estimation of nonlinear systems using linear multiple models[J].Aiche Journal,1997,43(5):1204-1226.
[8] ZHU Y C,XU Z H.A method of LPV model identification for control[J].IFAC Proceedings Volumes,2008,41(2):5018-5023.
[9] MORENO-BENITO M,FRANKL K,ESPU?A A,et al.A modeling strategy for integrated batch process development based on mixed-logic dynamic optimization[J].Computers & Chemical Engineering,2016,94:287-311.
[10] LOPEZ-SAUCEDO E S,GROSSMANN I E,SEGOVIA-HERNANDEZ J G,et al.Rigorous modeling,simulation and optimization of a conventional and nonconventional batch reactive distillation column:a comparative study of dynamic optimization approaches[J].Chemical Engineering Research & Design,2016,111:83-99.
[11] 黄江茵,赵晶.高纯度分馏塔的建模及其非线性控制[J].厦门大学学报(自然科学版),2016,55(2):251-258.
[12] HUANG J Y,JI G L,ZHU Y C,et al.Identification of multi-model LPV models with two scheduling variables [J].Journal of Process Control,2012,22(7):1198-1208.
[13] HARTLEY H O.The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares[J].Technometrics,1961,3(2):269-280.
[14] NARENDRA K S,GALLMAN P G.An iterative method for the identification of nonlinear systems using Hammerstein model[J].IEEE Trans Autom Control,1966,11(3):546-550.
[15] JI G L,HUANG J Y,ZHANG K K,et al.Identification and predictive control for a circulation fluidized bed boiler[J].Knowledge-Based Systems,2013,45(3):62-75.
[16] ZHU Y C.Multivariable system identification for process control[M].London:Elsevier Science,2001.

备注/Memo

备注/Memo:
收稿日期:2016-08-08 录用日期:2016-10-14
基金项目:福建省自然科学基金(2015J01275); 福建省教育厅省属高校科研项目(JK2015034)
*通信作者:jiangyinhuang@xmut.edu.cn
更新日期/Last Update: 1900-01-01