|本期目录/Table of Contents|

[1]陈金良,姚传义*,卢英华.三区带模拟移动床分离邻香兰素与香兰素[J].厦门大学学报(自然科学版),2017,56(04):492-498.[doi:10.6043/j.issn.0438-0479.201609021]
 CHEN Jinliang,YAO Chuanyi*,LU Yinghua.Three-zone Simulated Moving Bed for Separation of o-Vanillin and Vanillin[J].Journal of Xiamen University(Natural Science),2017,56(04):492-498.[doi:10.6043/j.issn.0438-0479.201609021]
点击复制

三区带模拟移动床分离邻香兰素与香兰素(PDF/HTML)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
56卷
期数:
2017年04期
页码:
492-498
栏目:
研究论文
出版日期:
2017-07-26

文章信息/Info

Title:
Three-zone Simulated Moving Bed for Separation of o-Vanillin and Vanillin
文章编号:
0438-0479(2017)04-0492-07
作者:
陈金良姚传义*卢英华
厦门大学化学化工学院,福建 厦门 361005
Author(s):
CHEN JinliangYAO Chuanyi*LU Yinghua
College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
关键词:
模拟移动床 邻香兰素 香兰素 异步切换 优化
Keywords:
simulated moving bed(SMB) o-vanillin vanillin asynchronous switching optimization
分类号:
TQ 028
DOI:
10.6043/j.issn.0438-0479.201609021
文献标志码:
A
摘要:
建立了同步及异步的三区带模拟移动床(SMB)分离邻香兰素和香兰素的数学模型,并通过实验成功实现了二者的高纯度、高效率分离.首先确定了SMB系统的流动相为V(乙醇):V(水)=35:65,固定相为反相C18硅胶.通过单组分前沿分析法测定了邻香兰素和香兰素在反相C18制备柱上的吸附等温线,通过经验公式分别计算了二者的总传质系数与轴向扩散系数,依据线性驱动力模型建立了SMB及Varicol模型.限定邻香兰素和香兰素的纯度都高于99.5%,洗脱液流量为2.0 mL/min,运用复合型法最大化进料流量,之后对优化结果进行实验验证.优化得到SMB分离系统的最大处理量为0.481 mL/min,在此优化条件下实验得到邻香兰素和香兰素的纯度分别为99.3%和99.0%; 优化得到Varicol分离系统最大处理量为0.551 mL/min,与SMB系统相比提高了14.6%,实验得到邻香兰素和香兰素的纯度分别为99.2%和99.1%.
Abstract:
In this study,the separation models of o-vanillin and vanillin with three-zone simulated moving bed(SMB)and Varicol were built.The separation of these two compounds was achieved successfully with high efficiency and high purity in the experiment.Firstly,the mobile phase of 35%(by vol.)aqueous alcohol and the stationary phase of reverse phase C18 silica gel were determined.The adsorption isotherms of these two compounds were determined with single-component frontal analysis.The lumped mass transfer coefficients and axial diffusion coefficients of o-vanillin and vanillin were calculated with empirical formula.Then,the SMB and Varicol models were structured based on the linear driving force model.The operation parameters were optimized for maximization of throughput using the complex method with purities of the two compounds constrained to be greater than 99.5% and the flow rate of desorbent fixed at 2.0 mL/min.The result was experimentally validated.Through optimization,the maximum throughput of SMB was 0.481 mL/min.The experimental purities of o-vanillin and vanillin under the optimized conditions were 99.3% and 99.0% respectively.The optimized maximum throughput of Varicol was 0.551 mL/min,which is 14.6% greater than that in SMB,with the experimental purity of 99.2% for o-vanillin and 99.1% for vanillin under the optimized conditions.

参考文献/References:

[1] 杨文文,吴秋林,唐鸿志,等.“香料皇后”:天然香兰素生物合成的研究进展[J].微生物学通报,2013,40(6):1087-1095.
[2] FACHE M,BOUTEVIN B,CAILLOL S.Vanillin production from lignin and its use as a renewable chemical[J].ACS Sustainable Chemistry & Engineering,2016,4(1):35-46.
[3] 贺旻.Reimer-Tiemann反应的研究及其应用[J].大连大学学报,1992,13(4):75-79.
[4] 李中柱,邹瑛.Reimer-Tiemann反应合成香草醛[J].化学世界,1991(1):18-19.
[5] 杨渐飞,杨亚圣,周联波,等.一种邻位香兰素和香兰素混合物的分离纯化方法:CN102718640A [P].2012-10-10.
[6] 季卫刚,文泽平,赵华文,等.甲基或乙基香兰素的精制方法:CN101838188A [P].2010-09-22.
[7] YU Y,WOOD K R,LIU Y A.Simulation and comparison of operational modes in simulated moving bed chromato-graphy[J].Industrial & Engineering Chemistry Research,2015,54(46):11576-11591.
[8] GONCALVES J C,RODRIGUES A E.Simulated moving bed reactor for p-xylene production:adsorbent and catalyst homogeneous mixture[J].Chemical Engineering Journal,2014,258:194-202.
[9] GONCALVES J C,RODRIGUES A E.Simulated moving bed reactor for p-xylene production:dual-bed column[J].Chemical Engineering and Processing:Process Intensification,2016,104:75-83.
[10] 雷光鸿,姜毅,魏承厚,等.模拟移动床色谱分离蔗髓提取物制备L-阿拉伯糖和D-木糖的研究与应用[J].食品科技,2015(3):214-217.
[11] LI M,BAO Z,XING H,et al.Simulated moving bed chromatography for the separation of ethyl esters of eicosapentaenoic acid and docosahexaenoic acid under nonlinear conditions[J].Journal of Chromatography A,2015,1425:189-197.
[12] ZHANG Z,MAZZOTTI M,MORBIDELLI M.Multiobjective optimization of simulated moving bed and Varicol processes using a genetic algorithm[J].Journal of Chromatography A,2003,989(1):95-108.
[13] 陈韬,陈贤铬,徐俊烨,等.模拟移动床色谱法拆分甲霜灵对映体[J].色谱,2016,34(1):68-73.
[14] GONG R,LIN X,LI P,et al.Experiment and modeling for the separation of guaifenesin enantiomers using si-mulated moving bed and Varicol units[J].Journal of Chromatography A,2014,1363:242-249.
[15] YAO C,TANG S,YAO H M,et al.Study on the number of decision variables in design and optimization of Varicol process[J].Computers & Chemical Enginee-ring,2014,68:114-122.
[16] MUN S.Strategy of rearranging the port locations in a three-zone simulated moving bed chromatography for binary separation with linear isotherms[J].Journal of Chromatography A,2012,1230(18):100-109.
[17] GUIOCHON G,SHIRAZI S G,KATTI A M.Fundamentals of preparative and nonlinear chromatography[M].New York:Academic Press,1994:236-281.
[18] LIN B,GOLSHANSHIRAZI S,GUIOCHON G.Effect of mass transfer coefficient on the elution profile in nonlinear chromatography[J].Journal of Physical Chemistry,1989,93(8):3363-3368.
[19] CHUNG S F,WEN C Y.Longitudinal dispersion of liquid flowing through fixed and fluidized beds[J].AIChE Journal,1968,14(6):857-866.
[20] POLING B E,PRAUSNITZ J M,O’CONNELL J P.The properties of gases and liquids[M].New York:McGraw-Hill,2001:143-145.
[21] WILLIAMSON J E,BAZAIRE K E,GEANKOPLIS C J.Liquid-phase mass transfer at low reynolds numbers[J].Industrial & Engineering Chemistry Fundamentals,1963,2(2):126-129.
[22] STORTI G,MAZZOTTI M,MORBIDELLI M,et al.Robust design of binary countercurrent adsorption separation processes[J].AIChE Journal,1993,39(3):471-492.
[23] MAZZOTTI M,STORTI G,MORBIDELLI M.Robust design of countercurrent adsorption separation processes:2.multicomponent systems[J].AIChE Journal,1994,40(11):1825-1842.
[24] YAO C,TANG S,LU Y,et al.Combination of space-time conservation element/solution element method and continuous prediction technique for accelerated simulation of simulated moving bed chromatography[J].Chemical Engineering & Processing,2015,96:54-61.

备注/Memo

备注/Memo:
收稿日期:2016-09-14 录用日期:2016-12-03
基金项目:厦门市科技计划项目(3502Z20143008)
*通信作者:cyao@xmu.edu.cn
更新日期/Last Update: 1900-01-01