|本期目录/Table of Contents|

[1]郑潇潇,谢 婷,肖 玥,等.原位还原制备Au-P/SiO2催化剂及其催化性能[J].厦门大学学报(自然科学版),2017,56(01):42-47.[doi:10.6043/j.issn.0438-0479.201601039]
 ZHENG Xiaoxiao,XIE Ting,XIAO Yue,et al.Au-P/SiO2 Prepared with In situ Reduction and Its Catalytic Performance[J].Journal of Xiamen University(Natural Science),2017,56(01):42-47.[doi:10.6043/j.issn.0438-0479.201601039]





Au-P/SiO2 Prepared with In situ Reduction and Its Catalytic Performance
郑潇潇谢 婷肖 玥张鸿斌张来英李海燕*
厦门大学 化学化工学院,固体表面物理化学国家重点实验室,醇醚酯化工清洁生产国家工程实验室,福建 厦门 361005
ZHENG XiaoxiaoXIE TingXIAO YueZHANG HongbinZHANG LaiyingLI Haiyan*
State Key Laboratory of Physical Chemistry of Solid Surfaces,National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
次亚磷酸钠 Au-P复合物 磷酸金 甲酸分解
sodium phosphinate Au-P compound gold phosphate formic acid decomposition
O 641
甲酸分解制氢是解决能源问题的有效途径,与Pd催化剂相比,Au催化剂不易失活,具有较好的稳定性.使用次亚磷酸钠原位还原制备了Au-P/SiO2催化剂,并利用X射线衍射、透射电子显微镜和X射线光电子能谱等表征手段探讨其结构,并以甲酸分解为目标反应研究其催化性能.结果表明,该方法制备的催化剂中Au粒子(粒径3 nm左右)均匀分散在SiO2表面,且P掺杂进入Au的晶格形成Au-P复合物,改变了Au的电子结构.同时反应过程中产生的P被Au3+氧化生成磷酸金,提供酸性中心,使Au-P/SiO2催化剂表现出较Au/SiO2催化剂更加优越的催化性能.在363 K,4 mol/L的甲酸溶液中,Au-P/SiO2催化剂催化甲酸分解的转化率可达51%,是未掺杂的Au/SiO2催化剂的4倍.
Formic acid decomposition is an effective way to solve energy problem.Compared with Pd catalysts,Au catalysts have better anti-inactivation ability.In this article,Au-P/SiO2 catalysts were prepared with in situ reduction using NaH2PO2.The catalysts were characterized by X-ray diffraction,transmission electron microscope,X-ray photoelectron spectroscopy,and catalytic performances of the catalysts were tested through catalytic decomposition of formic acid.The results of the catalyst characterization demonstrated that with this method, the Au particles(3 nm)highly dispersed on the surface of SiO2,and some P entered into the crystal lattice of Au,which contributed the formation of Au-P compound and changed the electrical property of Au.Meanwhile,in the process of reaction,P appeared,and it was oxidized into P by Auδ+ to form gold phosphate with acid-base properties.For the reasons above,Au-P/SiO2 is more active than Au/SiO2.In 363 K,4 mol/L formic acid solution,the conversion rate of formic acid reached 51% over Au-P/SiO2,which is 4 times of Au/SiO2.


[1] HARUTA M.Size-and support-dependency in the catalysis of gold[J].Catalysis Today,1997,36(1):153-166.
[2] GOODMAN D W."Catalytically active Au on titania":yet another example of a strong metal support interaction(SMSI)[J].Catalysis Letters,2005,99(1):1-4.
[3] KIM S M,LEE H,PARK J Y.Charge transport in metal-oxide interfaces:genesis and detection of hot electron flow and its role in heterogeneous catalysis[J].Catalysis Letters,2014,145(1):299-308.
[4] LIN S D,BOLLINGER M,VANNICE M A.Low tempera-ture CO oxidation over Au/TiO2 and Au/SiO2 catalysts[J].Catalysis Letters,1993,17(17):245-262.
[5] YUAN Y Z,ASAKURA K,WAN H L,et al.Preparation of supported gold catalysts from gold complexes and their catalytic activities for CO oxidation[J].Catalysis Letters,1996,42(1):15-20.
[6] YU N Y,DING Y,LO A Y,et al.Gold nanoparticles supported on periodic mesoporous organosilicas for epoxidation of olefins:effects of pore architecture and surface modification method of the supports[J].Microporous & Mesoporous Materials,2011,143(2/3):426-434.
[7] YAN W F,CHEN B,MAHURIN S M,et al.Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles[J].Journal of Physical Chemistry B,2004,108(9):2793-2796.
[8] LARSEN R,HA S,ZAKZESKI J,et al.Unusually active palladium-based catalysts for the electrooxidation of formic acid[J].Journal of Power Sources,2006,157(1):78-84.
[9] LIU J H,WANG A Q,CHI Y S,et al.Synergistic effect in an Au-Ag alloy nanocatalyst:CO oxidation[J].Journal of Physical Chemistry B,2005,109(1):40-43.
[10] LIU X Y,WANG A Q,WANG X D,et al.Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation[J].Chemical Communication,2008,27(27):3187-3189.
[11] BERT D C,CORMAC G L,JOHN D G,et al.Enhanced oxygen activation over supported bimetallic Au-Ni catalysts[J].Journal of Physical Chemistry C,2010,114(26):11498-11508.
[12] 滕兆刚.介孔SiO2及介孔磁性复合物的制备与性质研究[D].长春:吉林大学,2009:52-53.
[13] 仲峥嵘,焦晓新,郑潇潇,等.碳纳米管促进Au/Al2O3对甲酸分解的催化研究[J].厦门大学学报(自然科学版),2015,54(1):19-24.
[14] ZHANG L,NI Y H,LIAO K M,et al.Large-scale synthesis of single crystalline NiHPO3·H2O nanoneedle bundles based on the dismutation of NaH2PO2[J].Crystal Growth & Design,2008,8(10):3636-3640.
[15] LI Z,WANG Y,YU Q.Significant parameters in the optimization of synthesis of silver nanoparticles by chemical reduction method[J].Journal of Materials Engineering and Performance,2009,19(2):252-256.
[16] WEN J,LI J,LIU S,et al.Preparation of copper nano-particles in a water/oleic acid mixed solvent via two-step reduction method[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,373(1):29-35.
[17] 王瑀,周栋,丁毅,等.黄铜化学镀锡及其形貌变化过程的研究[J].电镀与环保,2012,32(2):21-23.
[18] CHENG L,ZHANG Z,NIU W,et al.Carbon-supported Pd nanocatalyst modified by non-metal phosphorus for the oxygen reduction reaction[J].Journal of Power Sources,2008,182(1):91-94.
[19] YANG G,CHEN Y,ZHOU Y,et al.Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation[J].Electrochemistry Communications,2010,12(3):492-495.
[20] 周柏玉.聚醚醚酮化学镀镍磷合金及其性能研究[D].长春:吉林大学,2013:9-11.
[21] CRIST B V.Handbook of monochromatic XPS spectra[M].America:John Wiley & Sons,2000:17-22.
[22] MARS P,SCHOLTEN J J F,ZWIETERING P.The cata-lytic decomposition of formic acid[J].Advances in Catalysis,1963,14(1):35-113.
[23] NAVLANI-GARCíA M,MARTIS M,LOZANO-CASTELLó D,et al.Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formicacid dehydrogenation[J].Catalysis Science & Technology,2015,5(1):364-372.


收稿日期:2016-01-20 录用日期:2016-04-22
基金项目:国家重点基础研究发展计划(973计划)项目(2011CBA00500); 福建省自然科学基金(E0510001)
更新日期/Last Update: 1900-01-01