|本期目录/Table of Contents|

[1]张丹莹,李翠华*,李雄宗,等.一种基于去冗余字典的图像去噪算[J].厦门大学学报(自然科学版),2012,51(4):691.
 ZHANG Dan ying,LI Cui hua*,LI Xiong zong,et al.An Image Denoising Algorithm Based on Redundance Removed Dictionary[J].Journal of Xiamen University(Natural Science),2012,51(4):691.
点击复制

一种基于去冗余字典的图像去噪算(PDF)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
51卷
期数:
2012年第4期
页码:
691
栏目:
研究论文
出版日期:
2012-07-15

文章信息/Info

Title:
An Image Denoising Algorithm Based on Redundance Removed Dictionary
作者:
张丹莹李翠华*李雄宗施华张东晓
厦门大学信息科学与技术学院,福建 厦门 361005
Author(s):
ZHANG DanyingLI Cuihua*LI XiongzongSHI HuaZHANG Dongxiao
School of Information Science and Technology,Xiamen University,Xiamen 361005,China
关键词:
超完备字典稀疏表示去噪正交匹配追踪奇异值分解
Keywords:
overcomplete dictionarysparse representationdenoisingorthogonal matching pursuitsingular value decomposition
分类号:
TP 391.4
文献标志码:
-
摘要:
图像去噪是图像处理中的关键问题之一,也是图像后续处理的基础.结合近年来兴起的稀疏表示理论,能更好的处理图像去噪问题.在正交匹配追踪(orthogonal matching pursuit,OMP)的基础上,采用K奇异值分解(KSVD)算法对图像进行去噪.为了得到更好的去噪效果,改进了字典更新算法,对字典原子进行优化选择,去除冗余的字典原子,并用图像块替换字典原子,用于提高字典训练的效率,与自然图像数据相适应.实验结果表明,与小波去噪算法相比,该算法具有良好的去噪能力,能较好地保持图像的细节和边缘特征
Abstract:
Image denoising is one of the key issues in the image processing and the foundation of further research. Combined with the sparse representation theory, which emerged in recent year,we can handle the image denoising problems better. Based on orthogonal matching pursuit(OMP) algorithm, this paper used Ksingular value decomposition(KSVD) algorithm for image denoising. In order to get better denoising performance, this paper improves dictionary updating algorithm. The core provides a more optimal choice for training of the dictionary atoms, replaces the useless and redundant dictionary of atoms with natural image patch dictionary atoms. By this way, we improve the training of the dictionary effectively, and adapt to natural image. Experimental results show that, compare with the wavelet denoising algorithm, this algorithm has a good denoising ability, while keeping the detail and the edge character of the image better, make the denoising image clear.

参考文献/References:

[1]邓承志,汪胜前,曹汉强.基于多原子快速匹配追踪的图像编码算法[J].电子与信息学报,2009,31(8):18071811. [2]Mallat S G,Zhang Z F.Matching pursuit with timefrequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12):33973415. [3]孙玉宝,肖亮,韦志辉,等.基于Gabor感知多成份字典的图像稀疏表示算法研究[J].自动化学报,2008,34(11):13791387. [4]Ventura R F,Vandergheynst P,Frossard P.Lowrate and flexible image coding with redundant representations[J].IEEE Transactions on Image Processing,2006,15(3):726739. [5]王天荆,郑宝玉,杨震.基于自适应冗余字典的语音信号稀疏表示算法[J].电子与信息学报,2011,33(10):23722377. [6]Aharon M,Elad M,Bruckstein A M.The KSVD: an algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):43114322. [7]史培培,陈秋生,尚倩.基于三层稀疏表示的图像修复算法[J].计算机工程,2010,36(12):189191. [8]Cai T T,Wang L.Orthogonal matching pursuit for sparse signal recovery with noise[J].IEEE Transactions on Information Theory,2011,57(7):46804688. [9]蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法[J].电子学报,2009,37(2):347350. [10]方红,章权兵,韦穗.改进的后退型最优正交匹配追踪图像重建方法[J].华南理工大学学报,2008,36(8):2327. [11]Elad M,Aharon M.Image denoising via sparse and redundant representations over learned dictionary[J].IEEE Transactions on Image Processing,2006,15(12):37363745. [12]Elad M,Aharon M.Image denoising via learned dictionaries and sparse representation[C]//Computer Vision and Pattern Recognition,2006 IEEE Computer Society Conference.New York,USA:IEEE,2006:895900. [13]Mairal J,Elad M,Sapiro G.Sparse representation for color image restoration[J].IEEE Transactions on Image Processing,2008,17(1):5369. [14]Protter M,Elad M.Image sequence denoising via sparse and redundant representations[J].IEEE Transactions on Image Processing,2009,18(1):2736.

备注/Memo

备注/Memo:
收稿日期:20111229基金项目:国防基础科研计划项目;国防科技重点实验室基金项目;福建省自然科学基金项目(2011J01365);高等学校博士学科点专项科研基金项目(20110121110020)*通信作者:chli@xmu.edu.cn
更新日期/Last Update: 2012-07-15