|本期目录/Table of Contents|

[1]张永育,李翠华*,余礼钹,等.基于Keren改进配准算法的IBP超分率重建[J].厦门大学学报(自然科学版),2012,51(4):686.
 ZHANG Yong yu,LI Cui hua*,YU Li bo,et al.IBP Superresolution Reconstruction Based on Improvement Approach of Keren Registration Method[J].Journal of Xiamen University(Natural Science),2012,51(4):686.
点击复制

基于Keren改进配准算法的IBP超分率重建(PDF)
分享到:

《厦门大学学报(自然科学版)》[ISSN:0438-0479/CN:35-1070/N]

卷:
51卷
期数:
2012年第4期
页码:
686
栏目:
研究论文
出版日期:
2012-07-15

文章信息/Info

Title:
IBP Superresolution Reconstruction Based on Improvement Approach of Keren Registration Method
作者:
张永育李翠华*余礼钹张东晓李雄宗施华
厦门大学信息科学与技术学院,福建 厦门 361005
Author(s):
ZHANG YongyuLI Cuihua*YU LiboZHANG DongxiaoLI XiongzongSHI Hua
School of Information Science and Technology,Xiamen University,Xiamen 361005,China
关键词:
超分辨率图像配准迭代反投影(IBP)
Keywords:
superresolutionimage registrationiterative backprojection(IBP)
分类号:
TP 391.4
文献标志码:
-
摘要:
提出了一种基于Keren改进配准算法的迭代反投影(iterative backprojection,IBP)超分辨率重建算法.该算法克服了Keren迭代配准算法基于小角度旋转的局限,并在迭代运算过程中引入了权重因子和阈值.权重因子有效地控制了算法的收敛速度,提高算法的稳定性.阈值的引入使得算法效率更高,配准结果更加准确.通过Keren改进配准算法进行配准,再通过IBP算法对配准后图像序列进行超分辨率重建,仿真结果表明,基于Keren改进配准算法的IBP重建具有良好的超分辨率重建效果.
Abstract:
This paper proposed an iterative backprojection(IBP) superresolution reconstruction algorithm based on Keren improvement registration method.Keren improved algorithm combines the ideas that overcame Keren algorithm based on small angle rotation.And in the iteration process this algorithm have introduced weighting factors and threshold.Weighting factor effectively control the convergence rate and improve the algorithm stability.The introduction of the threshold makes the algorithm more efficient,the registration results more accurate.By Keren improvement registration method for alignment,and then through the IBP after registration algorithm for superresolution reconstruction of image sequences.Simulation results show that the IBP superresolution reconstruction based on the Keren improved registration algorithm have good results.It has a good application value.

参考文献/References:

[1]Park S C,Park M K,Kang M G.Superresolution image reconstruction: a technical overview[J].IEEE Signal Processing Magazine,2003,20(3):2136. [2]Tsai R Y,Huang T S.Multiframe image restoration and registration[J].Advances in Computer Vision and Image Processing,1984,1:317339. [3]Marcel B,Briot M,Murrieta R.Calcul de translation et rotation par la transformation de Fourier [J].Traitement du Signal,1997,14(2):135149. [4]Vandewalle P,Süsstrunk S,Vetterli M.A frequency domain approach to registration of aliased images withapplication to superresolution[C]//EURASIP Journal on Applied Signal Processing.New York:Hindawi Publishing Corporation,2006:114. [5]Lucchese L,Cortelazzo G M.A noiserobust frequency domain technique for estimating planar rototranslations[J].IEEE Transactions on Signal Processing,2000,48(6):17691786. [6]Bergen J R,Anandan P,HannaK J,et al.Hierarchical modelbased motion estimation[C]//Second European Conference on Computer Vision.Heidelberg:Springer Berlin,1992:237252. [7]Keren D,Peleg S,Brada R.Image sequence enhancement using subpixel displacement[C]//Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition.Ann Arbor:IEEE,1988:742746. [8]BenEzra M,Lin Z,Wilburn B.Penrose pixels:superresolution in the detector layout domain[C]//International Conference on Computer Vision.Rio de Janeiro:IEEE,2007:18. [9]BenEzra M,Lin Z,Wilburn B.Penrose pixels for superresolution [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(7):13701383. [10]Fan Chong,Gong Jianya,Zhu Jianjun,et al.An improvement approach based on Keren subpixel registration method[C]//Signal Processing,2006 8th International Conference on.Beijing:IEEE,2006:14. [11]Lucas B D,Kanade T.An iterative image registration technique with an application to stereo vision[C]// Proceedings of the International Joint Conference on Artificial Intelligence.Vancouver:IJCAI,1981:674679. [12]范冲,龚健雅,朱建军.基于Keren改进配准算法的POCS超分辨率重建[J].计算机工程与应用,2006,36:2831. [13]Irani M,Peleg S.Improving resolution by image restoration[J].CVGIP:Graphical Models and Image Processing,1991,53(3):231239.

备注/Memo

备注/Memo:
收稿日期:20120105基金项目:国防基础科研计划项目;国防科技重点实验室基金项目;高等学校博士学科点专项科研基金项目(20110121110020)*通信作者:chli@xmu.edu.cn
更新日期/Last Update: 2012-07-15