|Table of Contents|

First-principles Studies on the Formation Energy of Oxygen Vacancies in ZnO(PDF)

Journal of Xiamen University(Natural Science)[ISSN:0438-0479/CN:35-1070/N]

2017 04
Research Field:
Research Articles
Publishing date:


First-principles Studies on the Formation Energy of Oxygen Vacancies in ZnO
Article ID:
LIN Chuanjin12ZHU Zizhong2*
1.College of Physics and Information Engineering,Minnan Normal University,Zhangzhou 363000,China; 2.College of Physical Science and Technology,Xiamen University,Xiamen 361005,China
first-principles calculations ZnO oxygen vacancy formation energy
CLC number:
O 471.4
Document code:

The studies on the distribution of single- and multi-vacancies of oxygen in ZnO are helpful in understanding the mechanism of the n-type conductivity of native ZnO material as well as the abilities of the radiation resistance of ZnO.In this paper,we employed the first-principles method based on the density functional theory to determine the formation energies of monovacancy,divacancies and trivacancies of oxygen in bulk ZnO under both O-rich and Zn-rich conditions.The results show that,under both O-rich and Zn-rich conditions,the formation energies of oxygen vacancy increase as the concentration of oxygen vacancy increase,indicating that it is difficult to form multi-vacancies of oxygen in bulk ZnO.With the increase of the concentration of oxygen vacancies,the absorption spectra of oxygen vacancies show red shift.For the oxygen divacancies in ZnO,the formation energy of separated oxygen vacancies is lower than that of gathered oxygen vacancies,indicating that it is not easy to produce oxygen vacancy aggregation in ZnO,which is able to explain the radiation hardness properties of ZnO.Under the Zn-rich condition,the formation energy of gathered divacancies of oxygen is greater than that of separated trivacancies,showing that oxygen vacancies are more difficult to gather under the Zn-rich condition.


[1] SCHROPP R E I,MADAN A.Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering [J].J Appl Phys,1989,66(5):2027-2031.
[2] SUCHEA M,CHRISTOULAKIS S,MOSCHOVIS K,et al.ZnO transparent thin films for gas sensor applications [J].Thin Solid Films,2006,515(2):551-554.
[3] SONG D,ABERLE A G,XIA J.Optimisation of ZnO:Al films by change of sputter gas pressure for solar cell application [J].Appl Surf Sci,2002,195(1/2/3/4):291-296.
[4] WANG Z L,SONG J H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J].Science,2006,312(5771):242-246.
[5] ?ZGUR ü,ALIVOV Y I,LIU C,et al.A comprehensive review of ZnO materials and devices [J].J Appl Phys,2005,98(4):041301.
[6] MAEDA K,SATO M,NIIKURA I.Growth of 2 inch ZnO bulk single crystal by the hydrothermal method[J].Semicond Sci Technol,2005,20(4):S49-S54.
[7] WANG Z L.Nanostructures of zinc oxide[J].Mater Today,2004,7(6):26-33.
[8] JANOTTI A,VAN DE WALLE C G.Native point defects in ZnO [J].Phys Rev B,2007,76(16):165202.
[9] LIU L S,MEI Z X,TANG A H,et al.Oxygen vacancies:the origin of n-type conductivity in ZnO[J].Phys Rev B,2016,93(23):235305.
[10] OBA F,TOGO A,TANAKA I,et al.Defect energetics in ZnO:a hybrid Hartree-Fock density functional study [J].Phys Rev B,2008,77(24):245202.
[11] PAUDEL T R,LAMVRECHT W R L.First-principles calculation of the O vacancy in ZnO:a self-consistent gap-corrected approach[J].Phys Rev B,2008,77(20):205202.
[12] LANY S,ZUNGER A.Many-body GW calculation of the oxygen vacancy in ZnO[J].Phys Rev B,2010,81(11):113201.
[13] JANOTTI A,VAN DE WALLE C G.Oxygen vacancies in ZnO[J].Applied Physics Letters,2005,87(12):122102.
[14] CLARK S J,ROBERTSON J,LANY S.Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals[J].Phys Rev B,2010,81(11):115311.
[15] 侯清玉,郭少强,赵春旺.氧空位浓度对ZnO电子结构和吸收光谱影响的研究 [J].物理学报,2014,63(14):147101.
[16] LOOK D C,REYNOLDS D C,HEMSKY J W.Production and annealing of electron irradiation damage in ZnO[J].Applied Physics Letters,1999,75(6):811-813.
[17] KRESSE G,JOBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method [J].Phys Rev B,1999,59(3):1758-1775.
[18] PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple [J].Phys Rev Lett,1996,77(18):3865-3868.
[19] PERDEW J P,CHEVARY J A,VOSKO S H,et al.A-toms,molecules,solids,and surfaces applications of the generalized gradient approximation for exchange and correlation[J].Phys Rev B,1992,46(11):6671-6687.
[20] MONKHORST H J,PARK J D.Special points for Brillouin-zone integrations[J].Phys Rev B,1976,13(12):5188-5192.
[21] VAN DE WALLE C G,NEUGEBAUER J.First-principles calculations for defects and impurities:applications to Ⅲ-nitrides [J].Journal of Applied Physics,2004,95(8):3851-3879.
[22] KOHAN A F,CEDER G,MORGAN D,et al.First-principles study of native point defects in ZnO[J].Phys Rev B,2000,61(22):15019-15027.
[23] ZHAO J L,ZHANG W Q,LI X M,et al.Convergence of the formation energies of intrinsic point defects in wurtzite ZnO:first-principles study by projector augmented wave method [J].Journal of Physics:Condensed Matter,2006,18(5):1495-1508.
[24] MADELUNG O,SCHULZ M,WEISS H.Numerical data and functional relationships in science and technology [M].Berlin:Springer-Verlag,1982:17.
[25] HALLIBURTON L E,GILES N C,GARCES N Y,et al.Production of native donors in ZnO by annealing at high temperature in Zn vapor [J].Applied Physics Letters,2005,87(17):172108.


收稿日期:2016-11-01 录用日期:2016-12-26
基金项目:国家自然科学基金重点项目(21233004); 福建省教育厅A类科技项目(JA13206)
Last Update: 1900-01-01